EMBRY-RIDDLE
Aeronautical University

Real Education. Above All.

PRESCOTT, ARIZONA, CAMPUS
Embry-Riddle Aeronautical University
3700 Willow Creek Road
Prescott, AZ 86301-3720
(928) 777-3728
Admissions: (928) 777-6600 or (800) 888-3728
Financial Aid: (928) 777-3765
E-mail (Admissions): pradmit@erau.edu
prescott.erau.edu

DAYTONA BEACH, FLORIDA, CAMPUS
Embry-Riddle Aeronautical University
600 S. Clyde Morris Blvd.
Daytona Beach, FL 32114-3900
(386) 226-6000
Admissions: (386) 226-6100 or (800) 862-2416
Financial Aid: (800) 943-6279
E-mail (Admissions): dbadmit@erau.edu
daytonabeach.erau.edu

WORLDWIDE CAMPUSES AND ONLINE
Embry-Riddle Aeronautical University
600 S. Clyde Morris Blvd.
Daytona Beach, FL 32114-3900
(386) 226-6910
Admissions: (866) 509-0743 or (800) 522-6787
Financial Aid: (866) 567-7202
E-mail (Admissions): wwem@erau.edu
worldwide.erau.edu

http://www.erau.edu
Table of Contents

Embry-Riddle Calendar 2011-2013 iv
Graduate Program Calendar 2011-2013 vi
Message from the President 7
Mission of the University 8
Embry-Riddle at a Glance 9
 Accreditations and Affiliations 12
Our Student Philosophy 13
University Information 14
Admission 16
 Graduate Admission 26
Undergraduate Academic Regulations and Procedures 31
Graduate Academic Regulations and Procedures 47
Financial Information 57
 Tuition and Fees 58
 Financial Assistance 61
Student Life and Services 65
Special Opportunities 80
 ROTC 82

Academic Programs

Table of Contents

<table>
<thead>
<tr>
<th>Academic Programs</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Programs</td>
<td>87</td>
</tr>
<tr>
<td>General Education</td>
<td>87</td>
</tr>
<tr>
<td>Graduate Programs</td>
<td>90</td>
</tr>
</tbody>
</table>

College of Arts and Sciences 92
 Aviation Business Administration 94
 Aviation Environmental Science 98
 Global Security and Intelligence Studies 100
 Interdisciplinary Studies 105
 Space Physics 107

College of Aviation 109
 Aeronautical Science 111
 Aeronautics 120
 Air Traffic Management 122
 Applied Meteorology 124
 Master of Science in Safety Science 129

College of Engineering 135
 Aerospace Engineering 138
 Computer Engineering 142
 Electrical Engineering 145
 Mechanical Engineering 148

Minor Courses of Study 152
Undergraduate Courses 160
Graduate Courses 232

Faculty and Administration

<table>
<thead>
<tr>
<th>Faculty and Administration</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Officials 237</td>
<td></td>
</tr>
<tr>
<td>Academic Administration 238</td>
<td></td>
</tr>
<tr>
<td>Administration 239</td>
<td></td>
</tr>
<tr>
<td>Prescott Campus Faculty 240</td>
<td></td>
</tr>
<tr>
<td>Board of Trustees 243</td>
<td></td>
</tr>
<tr>
<td>Index 245</td>
<td></td>
</tr>
</tbody>
</table>
2011 - 2013 Academic Calendar

Fall Semester 2011
(August 29 – December 15)

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>August 25–28</td>
<td>Orientation and Registration</td>
</tr>
<tr>
<td>August 29</td>
<td>Classes Begin</td>
</tr>
<tr>
<td>September 5</td>
<td>HOLIDAY – Labor Day</td>
</tr>
<tr>
<td>October 14</td>
<td>Fall Break</td>
</tr>
<tr>
<td>November 11</td>
<td>HOLIDAY - Veterans Day</td>
</tr>
<tr>
<td>November 23</td>
<td>HOLIDAY - Thanksgiving</td>
</tr>
<tr>
<td>December 8</td>
<td>Last Day of Classes</td>
</tr>
<tr>
<td>December 9</td>
<td>Study Day</td>
</tr>
<tr>
<td>December 10</td>
<td>Final Examinations</td>
</tr>
<tr>
<td>December 17</td>
<td>Commencement</td>
</tr>
</tbody>
</table>

Fall Semester 2012
(August 27 – December 13)

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>August 23-26</td>
<td>Orientation and Registration</td>
</tr>
<tr>
<td>August 27</td>
<td>Classes Begin</td>
</tr>
<tr>
<td>September 3</td>
<td>HOLIDAY – Labor Day</td>
</tr>
<tr>
<td>October 12</td>
<td>Fall Break</td>
</tr>
<tr>
<td>November 12</td>
<td>HOLIDAY - Veterans Day</td>
</tr>
<tr>
<td>November 21</td>
<td>HOLIDAY - Thanksgiving</td>
</tr>
<tr>
<td>December 6</td>
<td>Last Day of Classes</td>
</tr>
<tr>
<td>December 7</td>
<td>Study Day</td>
</tr>
<tr>
<td>December 8</td>
<td>Final Examinations</td>
</tr>
<tr>
<td>December 15</td>
<td>Commencement</td>
</tr>
</tbody>
</table>

Spring Semester 2012
(January 11 - May 3)

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 10</td>
<td>Orientation and Registration</td>
</tr>
<tr>
<td>January 11</td>
<td>Classes Begin</td>
</tr>
<tr>
<td>January 16</td>
<td>HOLIDAY - Martin Luther Day</td>
</tr>
<tr>
<td>February 20</td>
<td>HOLIDAY - Presidents Day</td>
</tr>
<tr>
<td>March 12-16</td>
<td>Study Day</td>
</tr>
<tr>
<td>April 26</td>
<td>Final Examinations</td>
</tr>
<tr>
<td>April 27</td>
<td>Commencement</td>
</tr>
<tr>
<td>April 28, 30-May 3</td>
<td></td>
</tr>
</tbody>
</table>

Spring Semester 2013
(January 9 – May 2)

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 8</td>
<td>Orientation and Registration</td>
</tr>
<tr>
<td>January 9</td>
<td>Classes Begin</td>
</tr>
<tr>
<td>January 21</td>
<td>HOLIDAY - Martin Luther Day</td>
</tr>
<tr>
<td>February 18</td>
<td>HOLIDAY - Presidents Day</td>
</tr>
<tr>
<td>March 11-15</td>
<td>Study Day</td>
</tr>
<tr>
<td>April 25</td>
<td>Final Examinations</td>
</tr>
<tr>
<td>April 26</td>
<td>Commencement</td>
</tr>
<tr>
<td>April 27, 29 - May 2</td>
<td></td>
</tr>
</tbody>
</table>

Summer Semester (Term A) 2012
(May 10 – June 25)

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 9</td>
<td>Orientation and Registration</td>
</tr>
<tr>
<td>May 10</td>
<td>Classes Begin</td>
</tr>
<tr>
<td>May 28</td>
<td>HOLIDAY - Memorial Day</td>
</tr>
<tr>
<td>June 21</td>
<td>Last Day of Classes</td>
</tr>
<tr>
<td>June 22</td>
<td>Study Day</td>
</tr>
<tr>
<td>June 23, 25</td>
<td>Final Examinations</td>
</tr>
</tbody>
</table>

Summer Semester (Term A) 2013
(May 9 – June 24)

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 8</td>
<td>Orientation and Registration</td>
</tr>
<tr>
<td>May 9</td>
<td>Classes Begin</td>
</tr>
<tr>
<td>May 27</td>
<td>HOLIDAY - Memorial Day</td>
</tr>
<tr>
<td>June 20</td>
<td>Last Day of Classes</td>
</tr>
<tr>
<td>June 21</td>
<td>Study Day</td>
</tr>
<tr>
<td>June 22, 24</td>
<td>Final Examinations</td>
</tr>
</tbody>
</table>

Summer Semester (Term B) 2012
(June 28 – August 13)

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 27</td>
<td>Orientation and Registration</td>
</tr>
<tr>
<td>June 28</td>
<td>Classes Begin</td>
</tr>
<tr>
<td>July 4</td>
<td>HOLIDAY - Independence Day</td>
</tr>
<tr>
<td>August 9</td>
<td>Last Day of Classes</td>
</tr>
<tr>
<td>August 10</td>
<td>Study Day</td>
</tr>
<tr>
<td>August 11, 13</td>
<td>Final Examinations</td>
</tr>
</tbody>
</table>

Summer Semester (Term B) 2013
(June 27 – August 12)

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 26</td>
<td>Orientation and Registration</td>
</tr>
<tr>
<td>June 27</td>
<td>Classes Begin</td>
</tr>
<tr>
<td>July 4</td>
<td>HOLIDAY - Independence Day</td>
</tr>
<tr>
<td>August 8</td>
<td>Last Day of Classes</td>
</tr>
<tr>
<td>August 9</td>
<td>Study Day</td>
</tr>
<tr>
<td>August 10, 12</td>
<td>Final Examinations</td>
</tr>
</tbody>
</table>
This catalog becomes effective July 1, 2011.
The 2011-2012 academic calendar applies to the Prescott Campus. This calendar is subject to change.

Orientation programs for all new Prescott students are planned, scheduled, and conducted before registration each semester. A special orientation program for new international students is held prior to the general orientation required for all new students. New students will receive special information regarding the date, time, and place of orientation activities from Admissions approximately 30 calendar days in advance of the activities.

In compliance with federal laws and regulations, Embry-Riddle Aeronautical University does not discriminate on the basis of race, color, gender, creed, national and ethnic origin, age, or disability in any of its policies, procedures, or practices. An Equal Opportunity institution, the University does not discriminate in the recruitment and admission of students, in the recruitment and employment of faculty and staff, or in the operations of any programs and activities.

Designed for use during the period stated on the cover, this catalog gives a general description of Embry-Riddle Aeronautical University and provides detailed information regarding the departments in the institution and curricula offered by the University. The online edition of this catalog will be considered to be the official version, reflecting addendum or corrections to the publication. The provisions of the catalog do not constitute a contract between the student and the University. The faculty and trustees of Embry-Riddle Aeronautical University reserve the right to change, without prior notice, any provision, offering, or requirement in the catalog. This includes the right to adjust tuition and fees, as necessary. The University further reserves the right at all times to require a student to withdraw for cause.

Official University Photography
Embry-Riddle Aeronautical University reserves the right to photograph members of the University community, including, but not limited to, its students and faculty, in situations appropriate to the image of the academic institution, and to publish likenesses in Embry-Riddle Aeronautical University publications, videos, or other recruitment or promotional materials. However, the University will, to the extent feasible, honor requests of constituents who do not wish their images to be photographed or published.
2011-2013 Graduate Program Calendar

Deadlines for Prescott Campus

<table>
<thead>
<tr>
<th>Admission</th>
<th>Fall 2011</th>
<th>Spring 2012</th>
<th>Summer 2012</th>
<th>Fall 2012</th>
<th>Spring 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>For U.S. Students</td>
<td>07/01/11</td>
<td>11/01/11</td>
<td>03/01/12</td>
<td>07/01/12</td>
<td>11/01/12</td>
</tr>
<tr>
<td>International Students</td>
<td>07/01/11</td>
<td>11/01/11</td>
<td>03/01/12</td>
<td>07/01/12</td>
<td>11/01/12</td>
</tr>
<tr>
<td>Graduation Application</td>
<td>09/30/11</td>
<td>01/31/12</td>
<td>01/31/12</td>
<td>09/28/12</td>
<td>01/31/13</td>
</tr>
</tbody>
</table>
To Our Students:

Thank you for choosing Embry-Riddle Aeronautical University for one of the most important investments you will make in your future. With thousands of students enrolled in our programs today, and over 100,000 alumni, you are now a member of a worldwide family of leaders in the aviation and aerospace industry.

Our commitment is to provide you with quality programs and faculty, as well as responsive and caring student services. In reviewing this catalog, you will see a broad range of academic opportunities that prepare our graduates for fulfilling careers within our dynamic industry. Many courses include projects where you will work with others as a team to solve real-world challenges.

As you read the history of Embry-Riddle, it will be clear that our University is evolving. In 85 years we have grown from the world’s finest aviation institute to an internationally respected comprehensive university, committed to teaching, research, and professional service to the aviation and space community. With more than 150 locations all over the world, we can truly say that the sun never sets on Embry-Riddle.

I welcome you to an exciting and global University, and to the Embry-Riddle experience.

John P. Johnson, Ph.D.
President
Our Mission
At Embry-Riddle, our mission is to teach the science, practice and business of aviation and aerospace, preparing students for productive careers and leadership roles in service around the world.

Our technologically enriched, student-centered environment emphasizes learning through collaboration and teamwork, concern for ethical and responsible behavior, the cultivation of analytical and management abilities, and a focus on the development of the professional skills needed for participation in a global community. We believe a vibrant future for aviation and aerospace rests in the success of our students. Toward this end, Embry-Riddle is committed to providing a climate that facilitates the highest standards of academic achievement and knowledge discovery, in an interpersonal environment that supports the unique needs of each individual.

Embry-Riddle Aeronautical University is the world’s leader in aviation and aerospace education. The University is an independent, non-profit, culturally diverse institution providing quality education and research in aviation, aerospace, engineering and related fields leading to associate, baccalaureate, master’s and doctoral degrees.

Our Vision
Embry-Riddle will be the world’s source for innovation and excellence in aerospace education and applied research.

Our Mission
The strength of our University is firmly rooted in our values. We expect that our students, faculty and staff share and demonstrate the values of student success, a positive learning environment and mind-set, safety first in all situations, personal growth, integrity, honesty, trust, diversity, open communication, teamwork, character, change for progress, fiscal soundness, healthy investments, and a can-do attitude.
Aviation and Embry-Riddle: The Lifelong Partnership

In 1903 Orville and Wilbur Wright made history with their sustained, controlled flight of a powered aircraft. Only a few short years later, the advent of regular passenger service and the start of World War I combined to produce a dynamic new industry to meet the demands of commercial and military aviation.

Unlike many other developments at the end of the Industrial Revolution, aviation required a special education — learning how to fly, learning about safety and weather, and learning about engines — from skilled maintenance to the outer limits of performance.

The need for trained pilots and mechanics quickly led to the establishment of a new type of school, one focused totally on aviation. In the beginning, these organizations were often a combination of airplane dealership, airmail service, flight training center, and mechanic school. The original Embry-Riddle operations fit that mold precisely.

On Dec. 17, 1925, exactly 22 years after the historic flight of the Wright Flyer, barnstormer John Paul Riddle and entrepreneur T. Higbee Embry founded the Embry-Riddle Company at Lunken Airport in Cincinnati, Ohio. The following spring the company opened the Embry-Riddle School of Aviation, coinciding with the implementation of the Air Commerce Act of 1926, which required, for the first time, the certification and medical examination of pilots.

Within three years the school had become a subsidiary of AVCO, the parent of American Airlines. Embry-Riddle remained dormant during most of the 1930s, mirroring the casualties of the Great Depression, and the Lunken Airport operation was phased out. By the end of the decade, however, World War II erupted in Europe and the demand for skilled aviators and mechanics grew significantly. Embry-Riddle’s second life was about to begin.

In South Florida, Embry-Riddle opened several flight training centers and quickly became the world’s largest aviation school. Allied nations sent thousands of fledgling airmen to the Embry-Riddle centers at Carlstrom, Dorr, and Chapman airfields to become pilots, mechanics, and aviation technicians. Some 25,000 men were trained by Embry-Riddle during the war years.

After the war, under the leadership of John and Isabel McKay, Embry-Riddle expanded its international outreach while strengthening its academic programs.

Jack R. Hunt

With Jack R. Hunt as president, in 1965 Embry-Riddle consolidated its flight, ground school, and technical training programs in one location by moving northward to Daytona Beach, Florida. This move, which proved to be a moment of singular importance, was made possible by Daytona Beach civic leaders who donated time, money, and the use of personal vehicles. The relocation signaled the rebirth of Embry-Riddle and the
Embry-Riddle at a Glance

start of its odyssey to world-class status in aviation higher education.

In 1968, Embry-Riddle was accredited by the Commission on Colleges of the Southern Association of Colleges and Schools to award degrees at the associate, bachelor, and master levels, and in 1970 changed its name from “Institute” to “University.” Also in 1970, centers were established at U.S. military aviation bases to serve the educational needs of active-duty military personnel.

In 1978, under President Hunt’s leadership, Embry-Riddle opened a western campus in Prescott, Arizona, on the 511-acre site of a former college. With superb flying weather and expansive grounds, the Prescott campus has been an outstanding companion to the University’s eastern campus in Daytona Beach.

Lt. Gen. Kenneth L. Tallman

Continuing Hunt’s legacy was Lt. Gen. Kenneth L. Tallman, president of Embry-Riddle for five years. He came to the University after a distinguished 35-year military career that included service as superintendent of the U.S. Air Force Academy. Under Tallman’s leadership, a school of graduate studies and the electrical engineering degree program were introduced. He led the University into research with the addition of the engineering physics degree program. He also developed stronger ties between Embry-Riddle and the aviation/aerospace industry.

Dr. Steven M. Sliwa

Dr. Steven M. Sliwa led the University from 1991 through 1998. Sliwa, the University’s third president, is best known for creating an entrepreneurial environment and for developing strategic partnerships with industry. These partnerships included a joint venture with FlightSafety International; a partnership with Cessna Aircraft Company; a technology alliance with IBM; and an exclusive educational partnership with the Aircraft Owners and Pilots Association. He also spearheaded a $100+ million capital expansion program, which included an $11.5 million congressional line-item appropriation. In addition, new academic and research programs were created at his direction to respond to structural changes in the industry while increasing market share in the University’s core programs.

George H. Ebbs

Embry-Riddle’s fourth president, Dr. George H. Ebbs, led the University from 1998 through 2005. During his tenure the annual college guide produced by U.S. News & World Report consistently ranked
Embry-Riddle at a Glance

Embry-Riddle’s aerospace engineering program No. 1 in the nation among schools without doctoral programs, a ranking the University has achieved every year since 2001. Embry-Riddle’s program in aerospace engineering is the largest in the nation, as are its programs in aeronautical science and engineering physics.

Under the leadership of Dr. Ebbs, a new graduate degree program in safety science was introduced, as well as new undergraduate degree programs in computer science, global security and intelligence studies, mechanical engineering, software engineering, and space physics. In addition, major construction was initiated at the Daytona Beach and Prescott residential campuses.

Dr. Ebbs presided over three military contracts worth a total of more than $57 million. Under those contracts Embry-Riddle provides aviation-related degree programs to the U.S. military in Europe; trained Air Force, Air National Guard, and international flight safety officers at Kirtland Air Force Base in Albuquerque, N.M.; and trained Air Force pilots at the U.S. Air Force Academy in Colorado Springs.

Dr. John P. Johnson

Dr. John P. Johnson is the University’s fifth president. He previously served as Embry-Riddle's interim president and as provost and chief academic officer. Under his leadership the University has expanded its research activity; has launched its first doctoral degree programs, in aviation and in engineering physics; and is developing a global strategy to take its aviation and aerospace expertise overseas. Before joining Embry-Riddle, he was the provost and vice president for academic affairs at Texas A&M University, Texarkana, and served as dean at the Medical University of South Carolina and at Northern Kentucky University.

Under Dr. Johnson’s leadership Embry-Riddle has expanded its research activity; has launched its first doctoral degree programs, in aviation and in engineering physics; and is developing a global strategy to take its aviation and aerospace expertise overseas, most recently by opening a Singapore location. Working with the FAA and industry leaders, Dr. Johnson has positioned the University as one of the nation’s leaders in the development of next-generation air traffic management technology.

For his leadership in aerospace education and research he received the Jimmy Doolittle Fellowship Award from the U.S. Air Force Association in 2007. He also received the 2010 John K. Lauber Award for Aviation Safety from the University Aviation Association, honoring the University’s record of safe flying and operations as part of the safety-culture initiative established by Dr. Johnson. The National Aeronautic Association awarded Embry-Riddle the prestigious 2008 Collier Trophy for the development and implementation of ADS-B technology under his stewardship.
University Accreditation

Embry-Riddle Aeronautical University, including the Daytona Beach Campus, the Prescott Campus, and the Worldwide Campus, is accredited by the Commission on Colleges of the Southern Association of Colleges and Schools (SACS-COC) (1866 Southern Lane, Decatur, GA 30033-4097, Telephone: 404-679-4501) to award degrees at the associate’s, baccalaureate’s, master’s, and doctoral levels.*

Campus-Specific Program Accreditations

Prescott Campus

The bachelor degree programs in Aerospace Engineering, Computer Engineering and Electrical Engineering are accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology (ABET) (111 Market Place, Suite 1050, Baltimore, MD 21102-4012; Telephone: 410-347-7700). The bachelor degree programs in Aeronautical Science and Aviation Business Administration are accredited by the Aviation Accreditation Board, International (AABI) (3410 Skyway Drive, Auburn, AL USA 36830. Telephone: 334-844-2431).

Daytona Beach Campus

The bachelor degree programs in Aerospace Engineering, Civil Engineering, Computer Engineering, Electrical Engineering, Engineering Physics, Mechanical Engineering, and Software Engineering are accredited by ABET. The bachelor degree programs in Aeronautical Science, Aerospace Electronics, Air Traffic Management, Applied Meteorology, Aviation Business Administration, and Safety Science are accredited by AABI. The bachelor degree programs in Business Administration, majors in Management and in Air Transportation, and the Master of Business Administration program including the Specialization in Aviation Management are accredited by the Association of Collegiate Business Schools and Programs (ACBSP) (11520 West 119th Street, Overland, KS 66213. Telephone: 913-339-9356). The Aviation Maintenance Science degree program is accredited by AABI for two Areas of Concentration: Aerospace Electronics and Maintenance Management. The certificate programs in Maintenance Technology (airframe and power plant) are approved by the Federal Aviation Administration (FAA).

At Both Residential Campuses

Certificate programs in Flight (private, commercial, instrument, multi-engine, flight instructor, and instrument flight instructor ratings) and Flight Dispatch are approved by the FAA.

* Contact information for SACS Commission on Colleges is included in order to enable interested constituents (1) to learn about the accreditation status of the institution, (2) to file a third-party comment about the institution’s decennial review of accreditation, (3) to file a complaint against the institution for alleged non-compliance with a standard or requirement, or (4) to provide a note of exemplary service or quality standards related to the institution.

Please note: Normal inquiries about the institution, such as admission requirements, financial aid, educational programs, etc., should be addressed directly to the institution and not to the Commission’s office.

For Embry-Riddle - Daytona, call (386) 226-6000.
For Embry-Riddle - Prescott, call (928) 777-3728.
For Embry-Riddle - Worldwide, call (386) 226-6910.
ADOPTED BY JACK R. HUNT IN 1975
UPDATED AND REAFFIRMED BY PRESIDENT GEORGE H. EBBs, PH.D., IN 2003

A STUDENT...
Is the most important person in this university.

A STUDENT...
Is not an interruption of your work, but the purpose of it.

A STUDENT...
Is not a cold statistic, but a flesh-and-blood human being with feelings and emotions like your own.

A STUDENT...
Is not someone to argue or match wits with.

A STUDENT...
Is a person who brings us needs - it is our job to fill those needs.

A STUDENT...
Is deserving of the most courteous and attentive treatment we can provide.

A STUDENT...
Is the person who makes it possible to pay your salary whether you are faculty or staff.

A STUDENT...
Is the lifeblood of this and every university.

A STUDENT...
Is something you once were, REMEMBER?
Embry-Riddle Aeronautical University is the world’s oldest and largest fully accredited university specializing in aviation and aerospace. A truly international institution, the University educates undergraduate and graduate students at its residential campuses in Daytona Beach, Florida, and Prescott, Arizona; at its Worldwide Campus locations around the globe; and through online learning.

Embry-Riddle offers its students a wide array of undergraduate and graduate degree programs in aviation, aerospace, transportation, business, engineering, and related high-tech fields.

In 2010, the University launched its first doctoral degree programs, the Ph.D. in aviation and the Ph.D. in engineering physics. The aviation doctorate, the first of its kind in the nation, is designed for working professionals who want to enhance their contributions to the aviation and aerospace organizations that employ them. The engineering physics doctorate builds on the University’s solid program of space research, which is funded by NASA, the National Science Foundation, the U.S. Air Force, and other agencies.

These new doctoral programs expand the applied research opportunities in which Embry-Riddle faculty and students assist the aviation/aerospace industry and governmental agencies, among others, in meeting real-world challenges.

The University’s 185-acre eastern campus in Daytona Beach is adjacent to Daytona Beach International Airport, with Orlando and Kennedy Space Center each only an hour’s drive away. Currently under construction is the James Hagedorn
Aviation Complex, an expansive three-building facility that will provide a new location for the campus’s flight training operations, aircraft maintenance training, and fleet maintenance. Recent additions to the campus include the High-Altitude Normobaric Lab, the College of Business academic hall, and the Apollo residence hall. Also of note: the College of Aviation academic hall, the Lehman Engineering & Technology Center, and the Advanced Flight Simulation Center. The Sim Center contains an FAA-certified Level-6 CRJ200 simulator and Level-6 Frasca flight-training devices that provide a level of on-campus training unique to Embry-Riddle.

The University’s 539-acre western campus is located in Prescott, Arizona, 100 miles north of Phoenix. Recent additions to the campus include the Aviation Safety and Security Archives and four labs that support study and research in the areas of Air Traffic Control, Ergonomics, High Performance Vehicles, and Industrial Hygiene. Also of note are the Udvar-Hazy Library & Learning Center, the Aerospace Experimentation & Fabrication Building, Haas Memorial Chapel, the Visitors Center, Academic Complex I, the King Engineering & Technology Center, and the Robertson Flight Simulation Center, which houses advanced Frasca flight-training devices.

The Worldwide Campus provides educational opportunities for working civilian and military professionals. Its academic programs are offered at more than 150 locations in the United States, Europe, Asia, Canada, and the Middle East and through Web-based online learning. Based on their unique requirements, classroom students can select online courses, and deployed military students can shift from classroom to 100% online course delivery. With Worldwide’s new EagleVision technology, students at different geographical locations can receive instruction at the same time.

With active faculty advisement, student teams from the various campuses regularly take top honors in competitions such as SAE engineering events and NASA Means Business and in flight competitions such as NIFA SAFECON and the Women’s Air Race Classic.

As aviation and aerospace continue to evolve, so does Embry-Riddle. The University is committed to the expansion of opportunities for students to work more closely with the aviation industry in the United States and in other nations. Guiding the process of evolution are dedicated teachers, administrators, alumni, trustees, and advisory board members who share our students’ love of aviation and who strive to ensure Embry-Riddle’s continued position as the world’s premier aviation and aerospace university.
Admission to the Prescott Campus

General Procedures

New students are eligible for admission at the beginning of the fall, spring, and summer terms. High school students may apply at the end of their junior year. Applications received after the priority filing dates will be processed on a space-available basis. You may apply online or download the application at: www.erau.edu.

<table>
<thead>
<tr>
<th>Term</th>
<th>Filing Priority</th>
<th>Notification</th>
<th>Deposit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>January 15</td>
<td>Rolling</td>
<td>May 1</td>
</tr>
<tr>
<td>Spring</td>
<td>November 1</td>
<td>Rolling</td>
<td>November 1</td>
</tr>
<tr>
<td>Summer Term A</td>
<td>April 1</td>
<td>Rolling</td>
<td>As requested</td>
</tr>
<tr>
<td>Summer Term B</td>
<td>April 1</td>
<td>Rolling</td>
<td>As requested</td>
</tr>
</tbody>
</table>

For more information contact the Admissions Office at:

Embry-Riddle Aeronautical University
Director of Admissions
3700 Willow Creek Road
Prescott, AZ 86301-3720
(928) 777-6600 or
(800) 888-3728
Fax (866) 532-5894
email: pradmit@erau.edu

First Year Applicants

The University defines a first-year candidate as one who is applying for degree status directly from high school. The University offers admission to all first-year applicants who present an academic record that demonstrates their ability to graduate from high school. To reach an admissions decision, the following information is considered: overall academic performance and grades, rank in class (if available), and standardized test scores. The University’s Admissions Office implements established academic policies and requirements that define the necessary qualifications for admission.

Entrance requirements to the University vary between technical and non-technical degrees.

- **Technical Majors:** Aerospace/Computer/ Electrical/Mechanical Engineering, Space Physics and Applied Meteorology.
- **Entrance requirements into a technical major** include 4 years of English, 4 years preferred college preparatory mathematics, 2 years of social science and 2 years of science with labs (3 years preferred) including chemistry and/or physics.

- **Non-Technical Majors:** Aeronautical Science (Professional Pilot), Aeronautics, Air Traffic Management, Aviation Business Administration, Aviation Environmental Science, Global Security and Intelligence Studies, Interdisciplinary Studies.

Entrance requirements into a non-technical major include 4 years of English, 3 years preferred college preparatory mathematics, 2 years of social science and 2 years of science with labs.

Home School Students

Home-schooled students need to provide a transcript of course work or portfolio and SAT 1 reasoning test or ACT scores.
Standardized Testing
SAT I reasoning test or ACT is required for admission for U.S. citizens and permanent residents. International students: The SAT I reasoning test or the ACT is strongly recommended for admission.

Standardized test results are always reviewed in conjunction with your academic record and are never the sole factor used to determine acceptance to your degree program.

English Language Proficiency
The Office of Admissions strongly recommends that all of our applicants, for whom English is not the primary language take the TOEFL exam to supplement their verbal SAT I score. This information will aid the University in accurately assessing verbal skills. For more information about testing dates and locations:

TOEFL Services
Educational Testing Service
P.O. Box 6151
Princeton, NJ 08541-6151
1-609-771-7100 (worldwide)
1-877-863-3546
http://www.toefl.org

-OR-

The College Board
5 Columbus Ave.
New York, NY 10023
(212) 713-8000

-OR-

The College Board
Box 1025
Berkeley, CA 94701
http://www.collegeboard.com

For more information concerning English language proficiency, contact the Director of International Recruitment, Office of Admissions, at (928) 777-6600.

Transcripts
The Admissions Office accepts either an official secondary school transcript or the General Education Development Certificate (GED). An official transcript or GED score report must be sent directly from the issuing institution to Embry-Riddle.

Transfer Applicants
The University welcomes applicants who have demonstrated success at other institutions of higher education. For purposes of admission, a transfer student is defined as any student who has earned college credit or military credit after graduating from high school. Transfer applicants are required to submit transcripts from each institution attended.

In making transfer admission decisions, the Admissions Office reviews official transcripts of all college-level work attempted and completed. Transfer candidates who have earned fewer than 30 college-level credit hours may be required to submit an official final high school transcript. The minimum grade point average required for admission to Embry-Riddle is a 2.00 from the last institution attended and a combined GPA of 2.00. Most successful transfer applicants present at least a 2.50 (C+) average on a four-point scale. Applicants with grade point averages between a 2.00 and a 2.40 will be reviewed on a case-by-case basis.

The University reserves the right to refuse admission to students who are on probationary status or who were academically dismissed from other colleges or universities. If the University admits such students, they will be admitted with conditional status.
Admissions

Transfer Credit

Transfer credit may be granted under the following conditions:

1. Appropriate coursework completed at another accredited institution with a grade of A, B, C, P, or equivalent will be accepted. Grades are not transferable.

2. Previous flight experience may be accepted in accordance with the Embry-Riddle policy as stated in the Advanced Standing section of this chapter.

3. Credit hours are transferable if earned at institutions accredited by the appropriate regional agency. Academic credit is accepted without regard to the date the course was completed. It is left to the discretion of the student, in consultation with the student’s academic advisor, to determine whether to retake the courses when placement testing indicates a deficiency. Embry-Riddle has sole discretion in determining which and how many transfer credit hours will be accepted toward degree requirements.

4. Embry-Riddle evaluates previous academic credit on a course-by-course basis. If classes are not applicable to the student’s degree program at Embry-Riddle, they will be considered as electives in excess of minimum degree requirements. The level of credit (upper or lower division) is determined by evaluation of the course at Embry-Riddle.

5. Embry-Riddle may, at its discretion, require an evaluation examination for any course submitted for transfer credit if there is doubt concerning the equivalency of the transfer course with a similar course offered at Embry-Riddle. Embry-Riddle cannot guarantee that courses are transferable. Courses are accepted at the discretion of the University.

6. The transfer student’s records (transcripts, etc.) will be evaluated according to the rules and regulations as described in this catalog and in accordance with University policies in effect at the time of the student’s admission to a degree program. After evaluation, the student will be sent a course-by-course outline of all transfer credit accepted by the University.

Nontraditional Student Applicants

Embry-Riddle acknowledges that full-time employment or other life experiences often provide the motivation and discipline to be a successful student in college. If a student’s academic career has been interrupted for a minimum of three years due to personal or financial reasons, the care of dependents, or serving time in the U.S. military, Embry-Riddle considers the student a nontraditional applicant and recognizes that his/her high school academic record may not accurately reflect the student’s ability. When reviewing the student’s application, unique circumstances are taken into account prior to determining whether the applicant should be a first-year or transfer student. If a GED (General Education Development Certificate) has been earned, an official copy of the results must be sent from the issuing agency. The following items must be provided by those wishing to be considered for admission:

1. Completed application and $50 application fee (nonrefundable).

2. Official copy of high school transcript or completion of the General Education
Admissions

Development Test (GED scores must be sent directly by the testing agency).

3. Documentation of activities or full-time employment experience (civilian, military, or any combination equaling three years).

Returning Student Applicants
An Embry-Riddle student whose attendance at the University is interrupted may be required to apply for readmission. In such cases, a new application for admission must be filed with the Director of Admissions. For more information, refer to the Continuous Enrollment section of the catalog.

Non-Degree Seeking Applicants
Embry-Riddle recognizes the needs of working adults who are interested in furthering their education for retraining or for enhancing professional skills. Students who meet University admission requirements are permitted to enroll in courses as special students in a non-degree seeking status. These students are permitted to continue their enrollment as long as they maintain satisfactory academic status or until they file a formal application for admission as a degree-seeking student. Persons interested in applying as a non-degree seeking student can get more information from the Director of Admissions.

International Applicants
This refers to nonresident, nonimmigrant students planning to study in the U.S. (typically on an F-1 or a J-1 visa.) The following items must be provided:

1. Completed application and $50 application fee (nonrefundable).
2. Official copy of upper secondary school academic records (must be sent directly from the school to Embry-Riddle). These records must arrive in the Admissions Office in the original envelope with an unbroken seal to be considered official. Both original language documents and English translations are required.

3. Standardized Test Scores - The SAT I reasoning test or the ACT is strongly recommended for admission. Standardized test results are always reviewed in conjunction with your academic record and are never the sole factor used to determine eligibility. For information about the SAT/ACT test dates and locations please contact:

The College Board
5 Columbus Ave.
New York, NY 10023
(212) 713-8000

-OR-
The College Board
Box 1025
Berkeley, CA 94701
http://www.collegeboard.com

-OR-
ACT
500 ACT Drive
P.O. Box 168
Iowa City, IA 52243-0168
(319) 337-1270
http://www.act.org

4. Test of English as a Foreign Language (TOEFL)
To be admitted into a degree program, international students who will not be graduating from an English educational system or for whom English is not the primary language must submit official TOEFL scores. The preferred score for admissions is 213 (computer based), 79 (Internet based), or 550 (paper based). Students scoring below
the preferred score, but who meet all other admission requirements, may be granted conditional admission; upon completion of adequate English language preparation, regular admission will be offered. Embry-Riddle in Prescott is a designated cooperating university with ELS Language Centers; for more information, please see the English Language Program section on page 22. The Office of Admissions also encourages all applicants for whom English is not the primary language to consider taking the SAT I to supplement their TOEFL score. This additional information will aid the University in accurately assessing verbal skills. For more information about TOEFL testing dates and locations contact:

TOEFL Services
Educational Testing Service
P.O. Box 6151
Princeton, NJ 08541-6151
1-609-771-7100 (worldwide)
1-877-0863-3546
http://www.toefl.org

For more information concerning TOEFL or the Embry-Riddle Language Institute, contact the Director of International Recruitment, Office of Admissions, at (928) 777-6600.

5. Transcripts from international postsecondary institutions. An official copy of record of study, grade obtained, examinations passed, and any diplomas, certificates, or degrees received at all secondary, postsecondary, university, and professional schools attended must be sent directly to Embry-Riddle by the school. These records must arrive in the Admissions Office in the original envelope with an unbroken seal to be considered official. Both native documents and English translations are required. In addition, applicants may be required to have these transcripts evaluated by an outside evaluation service. If so required, the applicant will receive specific instructions about obtaining the evaluation during the admission process. The fee charged for this service is the responsibility of the applicant. The service provider must send the course-by-course evaluation directly to Embry-Riddle. Following is a list of international translation and evaluation providers:

American Association of Collegiate Registrars & Admissions Officers (AACRAO).
One Dupont Circle, NW
Suite #520
Washington, DC 20036-1135
(202) 293-9161
tax: (202) 872-8857

Educational Credential Evaluators Inc. (ECE)
P.O. Box 514070
Milwaukee, WI 53203-3470
(414) 289-3400
www.ece.org

Foreign Credential Evaluations Inc.
1425 Market Blvd.
Suite 330
PMB #305
Roswell, GA 30338
(770) 642-1108
tax: (770) 641-8381
www.fceatlanta.com
6. I-20 Requirements for International Students. Upon application, international students must submit the following:
 a. Affidavit of Financial Support for International Students (see application booklet).

 b. Supporting bank letter verifying appropriate funds on deposit.* This amount will reflect the amount needed to cover tuition, fees, books, health insurance, and living expenses for one year, plus $3,000 for each accompanying dependent. In the case of sponsored students, an official notification of public or private sponsorship will take the place of a bank letter. A University assistantship contract does not relieve a student from the requirement to provide both a financial affidavit and a supporting bank letter, unless waived by the appropriate University official.

 International students must be fully prepared upon arrival on campus to meet all normal living expenses and manage their finances for the period of time required to complete the degree.

 c. At least 30 days prior to matriculation, students accepted for admission must submit a $200 advance tuition deposit to confirm their enrollment to the University. The deposit will be held in the student’s account for one year and will be credited toward tuition during the first semester of attendance. After one year, if the student has not enrolled, the deposit is forfeited.

 d. The I-20 Form must be in the student’s possession before departure and presented to the nearest U.S. embassy or consulate to obtain the necessary entry visa before departure to the U.S.

 e. The I-20 will be issued to the student upon acceptance to the University, if all required documentation has been received.

7. Provide documentation of immunity to vaccine-preventable diseases as described in material sent from the University. At enrollment, all students from areas determined to be endemic or at high risk for tuberculosis will be required to have a tuberculosis skin test (Mantoux test) and additional medical follow-up as needed and directed by the campus Health Services Office.

8. All flight students are required to hold a current First or Second Class Federal Aviation Administration (FAA) medical certificate. Aviation Medical Examiners (AMEs) are designated by the FAA to issue these certificates, following completion of an application...
and a physical examination. Aviation Medical Examiners can be found at the FAA Web site, www.fafsa.gov/pilots/amelocator/. International students desiring flight programs will be required to complete federal screening procedures in compliance with U.S. Department of Homeland Security (DHS) notification requirements. Specifics will be provided during the admissions process.

All materials submitted become the property of Embry-Riddle Aeronautical University and cannot be reproduced, returned, or forwarded.

SEVIS

SEVIS is the Student and Exchange Visitor Information System, consisting of a governmental computerized system to maintain and manage data related to foreign students and exchange visitors during their stay in the United States. This system allows real-time access to this information and assists colleges and universities in ensuring that students comply with the terms of their visas. For more information about SEVIS, please refer to the Bureau of Immigration and Customs Enforcement (ICE) Web site at http://www.ice.gov/sevis/.

English Language Program - ELS Language Centers

In order to help students fulfill the English proficiency requirement, Embry-Riddle in Prescott works as a cooperating school with ELS Language Centers, one of the premier providers of English language learning in the United States. If you meet all other admission criteria beside the TOEFL requirement, ERAU-Prescott can conditionally admit you while you study English with ELS Language Centers. Upon completion of Level 112 with ELS Language Centers, you can be fully admitted to begin your studies at ERAU – Prescott.

Please visit the ELS Language Centers website at http://www.els.edu for more information.

For direct information about ERAU – Prescott’s cooperating University arrangement with ELS Language Centers, and for a listing of the ELS Language Centers location nearest to our campus, please contact International Admissions at 001.928.777.6600.

Admitted Student Information

Important information regarding University policies and procedures will be sent to students upon acceptance. All students accepted for admission must submit a non-refundable $200 advance tuition deposit by the stated date. This deposit confirms your intent to attend the University and is credited toward the first semester’s tuition.

If you decide to accept our offer of admission for the fall term, you must submit the tuition deposit by the Candidates Common Reply date of May 1. Spring term deposit date is November 1. Summer term deposit dates are April 1 for summer A and May 1 for summer B.

The deposit will be held in the student’s account for one year. If the student does not enroll after one year, the deposit is forfeited.

A student who cancels the application at any point in the admissions process may reactivate the application without a fee for one year at any time up to the admissions deadline for the same semester of the following academic year. After one year, a new application, fee, and supporting documents must be submitted.
Embry-Riddle Aeronautical University’s admission decision is valid for one term only. Further, when a scholarship is awarded, it is only valid beginning the specific term indicated in the award and/or admissions notification letter. Because admission and scholarship criteria may change from one term to another, admission decisions and scholarship awards are not automatically deferred.

Students requesting a deferral are required to submit their request in writing to the Director of Admissions. The request must include the reason/s for the deferral. Scholarship deferrals for one term are at the discretion of the Director of Financial Aid as these awards are offered for fall term enrollment.

Advanced Standing

Advanced standing may be awarded for prior learning achieved through postsecondary education. Students who feel their background warrants consideration for advanced standing not already granted for specific courses may request course-equivalency examinations. Flight experience will be evaluated in accordance with procedures outlined later in this section.

It is the student’s responsibility to ensure that all documentation is submitted to the University. This information can either be sent with the application for admission or mailed under separate cover. Formal application for advanced standing for flight training must be made before the end of the student’s first semester of attendance.

All academic evaluations for advanced standing will be completed before the end of the student’s first semester of attendance or readmission to the University. The student will be given a copy of the completed official evaluation and have 30 calendar days to question the credit awarded. Advanced standing and transfer credit granted in accordance with these procedures will be authenticated and maintained by the Records Office. Documentation that may be submitted for consideration toward advanced standing includes military training, FAA certificates, official examination scores, and professional experience. Credit may be awarded as follows:

1. The University offers advanced standing credit toward a college degree to those students who present official College Entrance Examination Board (CEEB) Advanced Placement Test scores of 3 or better on any examination. Up to 30 hours of International Baccalaureate (IB) credit may be earned for official test scores of 4 or higher.

2. Embry-Riddle follows the standards recommended by the American Council on Education for awarding credit for the College Level Examination Program (CLEP) general examinations. To be officially evaluated for credit, the test scores must be submitted before the student’s initial enrollment as a degree candidate. The number of credit hours recognized by Embry-Riddle for these examinations in various disciplines are as follows:

 - Communications: 6 credit hours
 - Humanities: 6 credit hours
 - Social Sciences: 6 credit hours
 - Natural Sciences: 6 credit hours
 - Mathematics: 6 credit hours

3. The University has approved certain CLEP subject examinations, Defense Activity for Non-Traditional Educational Support (DANTES) examinations, and Excelsior College Examination (ECE)
Admissions

for award of credit as applicable to the student’s program. Scores from these examinations must be submitted before initial enrollment as a degree candidate to be officially evaluated for credit. Credit for these examinations may not be applied toward the last 30 credit hours required for a bachelor’s degree.

4. Training in military service schools will be considered for credit by each curriculum division, based on the recommendation of the American Council on Education.

5. Students who hold a pilot certificate may be eligible for advanced standing. Advanced standing based on a pilot certificate may be awarded for the appropriate flight course. A student who received college credit for their flight training may be eligible for advanced standing for certain academic courses. A determination of the exact amount of credit to be awarded will be made by the Records Office and the Flight Department. In any case, advanced standing credit must be applied for during the first semester. To obtain credit, the applicable FAA certificate must be presented at the time that the advance standing request is made. All advance standing credit for flight courses will be recorded on academic transcripts after the first flight course is completed at Embry-Riddle.

6. Students holding a Commercial Pilot Certificate or Airline Transport Pilot Certificate, with significant recent experience beyond the basic certification level, may petition for additional credit. All certificate levels refer to U.S. FAA certificates. Foreign certificate holders must convert their licenses to FAA-issued certificates prior to any credit being awarded.

7. The degree program for which holders of the FAA Airframe and Powerplant Certificate may receive advanced standing is Aeronautics.

8. The Aeronautics degree awards college credit based on an individual’s past training and job experience in an aviation-related field. A description of advanced standing applicable to the Aeronautics degree may be found in the Academic Programs section of the catalog.

9. A student who possesses qualifications not listed above and who believes that his/her background warrants consideration for advanced standing may submit appropriate evidence of credentials for evaluation.

Degree Completion Program/Active Duty Military Personnel

All branches of the armed services offer various “Bootstrap” and degree completion programs. Embry-Riddle welcomes applications from qualified military personnel seeking to participate in such programs.

Applications must be submitted by established deadlines. Upon receipt of the student’s application and supporting documents, the University will evaluate previous college coursework, military education, and work experience to determine eligibility for advanced standing. Each applicant receives a copy of the University evaluation form stating specifically the courses for which credit has been given.
Immunization Requirements

A Medical Report Form is required. All entering students born after Dec. 31, 1956, must provide proof of two doses of MMR (Measles, Mumps, and Rubella) administered on or after January 1, 1968 and on or after their first birthday. All students who reside in University housing must either document the immunizations for Hepatitis B and Meningococcal Meningitis or sign a waiver declining vaccination. International students must have a tuberculin test upon arrival to campus.

Flight Training Requirements

All students planning to begin flight training at Embry-Riddle are required to hold a current First or Second Class Federal Aviation Administration (FAA) medical certificate and provide proof of citizenship before beginning flight training. In addition, the Aviation and Transportation Security Act (ATSA) requires all flight students to show acceptable documentation of U.S. citizenship OR complete background check requirements. Upon acceptance to the University, all students will be sent specific, detailed information on requirements for flight students.
Embry-Riddle seeks graduate students of good character who have demonstrated scholastic achievement and capacity for future growth. Our admission process is aimed at identifying the best students who show the potential to succeed in our graduate program. We use the guidelines in the next section to determine which applicants are to be granted full admission to the Master of Science in Safety Science graduate program. Students who fail to meet these guidelines, but who are judged to have potential for success in the graduate program, may be granted conditional admission (subject, of course, to openings in the graduate program). Students admitted under conditional status will have to prove their ability to pursue a graduate program by meeting specific performance criteria after matriculation at the University.

Admission actions are often taken in the anticipation of the applicant successfully completing the baccalaureate or some other admission requirement. Admission granted by such actions is provisional and is automatically rescinded if the applicant fails to meet the requirement before the specified date for the start of graduate study.

The Master of Science in Safety Science may require that potential degree candidates display a mastery of a number of topical areas critical to the initiation of graduate-level study in this field. Candidates are informed of these requirements along with their notification of acceptance.

Any questions relating to the criteria or any other aspect of the admissions process should be addressed to the Graduate Admissions Office on the Prescott Campus.
Master of Science in Safety Science (MSSS)

Applicants for admission to the MSSS program must have prerequisite knowledge in the areas of:
- Mathematics
- Chemistry
- Physics

If they do not possess such knowledge, they may be required to register for undergraduate prerequisite courses in these areas. The student should possess a strong academic record, generally evidenced by a CGPA of 2.75 or higher.

Conditional Admission

- Students who fail to satisfy the guidelines for full admission but are judged to have potential for success in the graduate program may be granted conditional admission.

- Students admitted under conditional status must prove their ability to pursue a graduate program by meeting specific performance criteria after matriculation at the University. Students admitted on conditional status will be monitored closely as to scholarly performance. Students who are admitted conditionally will be on conditional status until they have completed nine hours of graduate work. During this period, students may receive no grade lower than a B. Students will not be permitted to repeat courses during this period.

- The conditions of admission will be communicated to applicants in the letter of admission. Students are fully admitted to the program when the conditions have been properly satisfied.

Procedures for Admission

Applications will not be processed until all required documents are received. Applications received after the submission deadlines stated in the following sections will be processed as quickly as possible, but acceptance for admission may not be early enough for the applicant to begin the program as soon as desired. From the day of the receipt of all application documentation, admission notifications are usually sent within three weeks.

Prescott applicants should submit their application to:
Embry-Riddle Aeronautical University
Graduate Admissions Office
3700 Willow Creek Road
Prescott, AZ 86301-3720
(800) 888-3728 -or- (928) 777-6600
fax: (928) 777-6613
email: pmssss@erau.edu
http://www.erau.edu/pr/degrees/

U.S. Citizens and Permanent Residents of the U.S.

All applicants must submit the following items to the Graduate Admissions Office prior to the application deadline:

1. Completed application form and the $50 application fee. Please note: Permanent residents must provide a photocopy of their ARC (Alien Registration Card).

2. Transcripts. Official sealed transcripts for all college coursework earned (both graduate and undergraduate). Transcripts must be sent directly from the institutions attended to Embry-Riddle Graduate Admissions. A minimum of a bachelor degree is required.

3. Course descriptions for all graduate coursework to be considered for transfer.
Graduate Admissions

4. **Statement of objectives.** The statement of objectives is an important part of your application. You should give your reasons for wishing to do graduate work in the field you have chosen, incorporating your interests and your background as well as your long-term professional goals, defining how Embry-Riddle’s Master of Science in Safety Science program can support those interests and goals. This should be at least three or four paragraphs.

5. **Three graduate applicant reference forms,** two academic and one professional.

6. **Resume.** A current resume outlining your education, work experience, special activities, and awards.

7. **Assistantships.** If interested in assistantship opportunities, submit an assistantship application declaring your interest in research, teaching, or administrative fields. Indicate any special skills that you feel may qualify you for an assistantship. To be eligible for an assistantship, a student must have a minimum 3.00 GPA in their undergraduate degree and have full graduate status (conditional admission eliminates a student from eligibility until all conditions are removed).

Special Requirements for International Applicants

Embry-Riddle is authorized under federal laws to enroll nonimmigrant alien students. An international applicant is defined as a nonresident, nonimmigrant applicant entering the U.S. on a nontourist visa.

In addition to the above required documents, **international applicants must also submit the following:**

1. All applicants whose native language is not English, or who were educated at schools where English was not the language of instruction in all disciplines, must submit their official TOEFL scores sent directly from the testing authority. The minimum acceptable score is 550 written/213 computer-based/79 iTOEFL.

2. In addition to official sealed transcripts, for any transcript not in English, a notarized English translation must also be submitted.

I-20 Requirements for International Students

Upon application, international students who require an initial or renewed student visa must submit the following:

2. Supporting bank letter verifying appropriate funds on deposit. Please refer to the student’s acceptance packet for the specific dollar amount requirement. This amount will reflect the amount needed to cover tuition, fees, books, health insurance, and living expenses for one year, plus $3,000 for each accompanying dependent. In the case of sponsored students, an official notation of public or private sponsorship will take the place of a bank letter. A University assistantship contract does not relieve a student from the requirement to provide both a financial affidavit and a supporting bank letter, unless waived by the appropriate University official. International students must be fully prepared upon arrival on campus to meet all normal living expenses and manage their finances for the period of time required to complete the degree.
3. The I-20 Form must be in the student’s possession before departure and be presented to the nearest U.S. embassy or consulate to obtain the necessary entry visa before departure to the U.S. The I-20 will be issued to the student upon admission to the University if all required documentation has been received.

These rules and procedures apply equally to international students already studying in the U.S. who wish to pursue graduate study at Embry-Riddle. The only exception is that they must follow the procedures required by the U.S. Bureau of Immigration and Customs Enforcement to obtain approval for the transfer. Students should seek the assistance of the international student advisor at their current university to assist them with the transfer procedures. Transfer students should contact their current school’s International Student Service Office and request that their SEVIS record be released to Embry-Riddle at the end of their last semester at their current school. This will allow our admissions office to issue a new I-20.

Admission Time Limit

Applicants who have been accepted for admission into Embry-Riddle graduate programs must enroll in Embry-Riddle graduate courses within one year from the date of the semester for which they were accepted. Those who do not enroll in the specified time period must reapply for admission according to the regulations and procedures in effect at the time of reapplication.

A student who cancels the application at any point in the application process may reactivate the application at any time up to one year from the date of application. After one year, a new application, fee, and supporting documents must be submitted.

Admission Deposit

At least 30 calendar days prior to matriculation, admitted students must submit a $200 tuition deposit.

The deposit will be held in the student’s account for one year and will be credited toward tuition during the first semester of attendance. After one year, if a student has not matriculated, the deposit is forfeited.

Credit for Prior Academic Work and for Courses Taken at Other Institutions

Students applying prior academic work toward their Embry-Riddle graduate program requirements must submit appropriate documentation for such credit as part of the admission process. The request must be in writing and be accompanied by official transcripts or equivalent evidence of such work. Requests must be approved by the academic department chair or their designee.

Prior academic work and courses taken at other institutions by veteran students and/or other eligible students receiving Veterans Education Benefits will be evaluated and credit granted as appropriate and will be reported to the DVA as required by law.

Credit (called transfer credit) may be received for graduate work done at another appropriately accredited college or university.

Credit (called escrow credit) may be received for certain graduate courses taken by Embry-Riddle undergraduates.

Credit may be received for certain graduate courses taken as non-degree graduate work or as part of another (completed or non-completed) Embry-Riddle graduate
degree program. When transferring from one Embry-Riddle graduate program to another this credit may include prior work on a GRP or thesis.

The combined total credit applied to an Embry-Riddle graduate degree may not exceed 12 credit hours.

In order to satisfy a graduate degree program requirement, the academic work for which such credit is sought must be determined to be specifically relevant to the applicant’s graduate degree program at Embry-Riddle. The content of the applicable course or other program should be used to determine the nature of the credit to be applied to the student’s degree requirement. The appropriate Prescott academic department chair or designee shall make these determinations.

Credit will be granted only if the student demonstrated performance expected of a graduate student at Embry-Riddle; in the case of graduate courses, this normally means that the course was completed with a B or better (3.00 on a 4.00 system).

Credit for academic work used to satisfy the requirements of an undergraduate degree will not be accepted toward the requirements for a graduate degree.

Credit will generally be accepted only for courses that were completed in the seven-year period immediately preceding the date that the student begins classes.

Permission to obtain graduate credit for courses to be taken outside the University after matriculation must be granted by the academic department chair or designee.

The last nine hours of graduate credit on a degree program must be earned at Embry-Riddle.

A student may not be enrolled in more than one graduate degree program. Upon completion of a Embry-Riddle graduate degree program, a student may elect to apply to another graduate degree program at this university. After meeting admissions requirements and receiving notification of acceptance, a student may request that up to 12 hours of credit be transferred to the new degree program if the hours are applicable to the newly elected degree program. The transfer of these hours is at the discretion of the appropriate college dean or their designee.

Intra-University Transfer

Graduate students who have matriculated on either the Daytona Beach, Prescott, or Worldwide Campuses who are continuously enrolled students, and who have met their financial obligations on the campus where they matriculated, may transfer from one campus to the other. Transfers are not automatic and certain conditions must be met. Additionally, a vacancy must exist in the program to which the student wishes to transfer, either permanently or as a visiting student.

Students are urged to begin this process at least 45 days before the first day of classes in order to avoid any interruption in the progress toward their degree.
Undergraduate Regulations and Procedures

All Embry-Riddle students are responsible for knowing all academic regulations and procedures required for continued attendance at the University. Academic regulations and procedures are presented in University publications such as this catalog, the Student Handbook, the Flight Operations Manual, the Residence Hall Regulations pamphlet, the Curriculum Manual, and the Academic Policies and Procedures Manual. These documents are available for reference at campus records offices, student government offices, and academic departments throughout the University. A student who requires clarification of any policy or regulation should seek help from their academic advisor, program/department chair, or the Records Office. University regulations will not be waived because a student pleads ignorance of established policies and procedures.

The University reserves the right to change curricula and academic regulations and procedures without notice or obligation. Such changes are updated to the official electronic catalog and published in the next catalog.

Students should consult the graduate section of this catalog for academic policies and regulations regarding graduate programs.

Academic Advising

All new students are assigned an academic advisor. Academic advisors help students choose and schedule courses to meet their educational goals.

Academic advisors post their scheduled office hours and students should call on them frequently and whenever assistance is needed.

Schedule of Classes and Registration

Students are required to register for each semester of enrollment and are encouraged to do so via Web registration. First-year students and students in academic difficulty will be denied access to Web registration and must first see their advisor for approval of course selection prior to registration. Registration must be completed and payment of all tuition deposits and fees must be made according to instructions published in the Financial Handbook by the Bursars Office. Students are not officially enrolled until they complete all phases of registration, including financial requirements.

Penalties will be charged for late payment of fees. Registration will continue through the first five class days of the semester if circumstances prevent the student from registering during the regular registration period. Except for flight courses, registration will not be allowed after the fifth class day of the semester. Special circumstances can be appealed through the dean of the college. Due to the scheduling requirements associated with flight training, flight course registration continues throughout the semester.

A schedule of classes is prepared for each semester. The University reserves the right to make necessary and appropriate adjustments to the published schedule to include cancellation or rescheduling of any class.
Class Attendance

Because regular attendance and punctuality are expected in all courses, attendance may be included in the grading criteria of an individual class. Absences are counted from the first scheduled meeting of the class. Students that do not attend the first week of classes without notifying their instructors will be dropped from the course.

Because minimum contact hour requirements have been imposed by the FAA for certain classes leading to FAA certificates, attendance requirements in those courses are rigorously enforced. Explanations for all absences should be given to the instructor in advance whenever possible.

A final examination is normally given in each course at the end of the semester. A student who misses a final examination without advance permission from the instructor may be assigned a failing grade (F) for the course. A grade of incomplete (I) may be given if the student has obtained advance permission from the instructor or can provide satisfactory evidence that the absence could not be prevented.

Academic Integrity/Conduct

Embry-Riddle is committed to maintaining and upholding intellectual integrity. All students, faculty, and staff have obligations to prevent violations of academic integrity and take corrective action when they occur. The adjudication process will include the sanction imposed on students who commit the following academic violations, which may include a failing grade on the assignment, a failing grade for the course, suspension, or dismissal from the University:

1. Plagiarism: Presenting as one’s own the ideas, words, or products of another. Plagiarism includes use of any source to complete academic assignments without proper acknowledgment of the source.
2. Cheating is a broad term that includes the following:
 a. Giving or receiving help from unauthorized persons or materials during examinations.
 b. The unauthorized communication of examination questions prior to, during, or following administration of the examination.
 c. Collaboration on examinations or assignments expected to be individual work.
 d. Fraud and deceit, which include knowingly furnishing false or misleading information or failing to furnish appropriate information when requested, such as when applying for admission to the University.

Students exhibiting the following undesirable acts of conduct may be suspended or dismissed from the University. Criminal acts must be reported to the appropriate law enforcement and University authorities.

1. Unauthorized alteration or misuse of one’s own or another’s academic records or transcripts.
2. Forging, altering, falsifying, destroying, or unauthorized use of a University document, record, or identification. This includes using the logo, stationery, or business cards of the University or otherwise identifying oneself as an agent of the University for personal, non-University business.
3. Misuse of computing facilities and/or security violations, including attempted violations of computing facilities.
4. Conduct that disrupts the educational process of the University.
Undergraduate Academic Regulations and Procedures

Unit of Credit
Semester credits are used throughout the University system. Transferred quarter hours will be converted to semester credit hours on the following basis: A quarter hour equals two-thirds of a semester hour.

Course Load Status
Enrollment in 12 credit hours constitutes the minimum load for full-time student status during the fall and spring semesters. The minimum load for full-time student status during each summer term is 6 credit hours. Students enrolled in fewer credits than the minimum full-time load are classified as part-time. All audited courses and courses taken for credit are counted in determining the student’s load for a semester.

The maximum credit hour load is 16 credit hours for spring or fall semester or 9 credit hours for summer term. Students may register for an overload of hours with advisor approval. A student with more than 27 completed credit hours and an Embry-Riddle cumulative GPA of 3.00 or higher may enroll for up to 18 credit hours, in a fall or spring semester with no increase in tuition for hours over the block (12-16 credit hours). Completed credit hours and an Embry-Riddle cumulative GPA at the end of the spring semester will be used for fall semester eligibility. Completed credit hours and an Embry-Riddle cumulative GPA at the end of the summer semester will be used for spring semester eligibility.

Classification of Students
Students are classified at the end of each semester based on the total number of credit hours earned in accordance with the following schedule:

<table>
<thead>
<tr>
<th>Year</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>First-Year:</td>
<td>fewer than 28 hours</td>
</tr>
<tr>
<td>Sophomore:</td>
<td>28-57 hours</td>
</tr>
<tr>
<td>Junior:</td>
<td>58-87 hours</td>
</tr>
<tr>
<td>Senior:</td>
<td>88 hours or more</td>
</tr>
</tbody>
</table>

Grading System
The following indicators, used on grade reports and transcripts, signify the quality of a student’s academic performance.

<table>
<thead>
<tr>
<th>Letter Grade</th>
<th>Student Performance</th>
<th>Grade Points/Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Superior</td>
<td>4</td>
</tr>
<tr>
<td>B</td>
<td>Above average</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>Average</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>Below average</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>Failure</td>
<td>0</td>
</tr>
<tr>
<td>AU</td>
<td>Audit</td>
<td>0</td>
</tr>
<tr>
<td>I</td>
<td>Passing but incomplete</td>
<td>0</td>
</tr>
<tr>
<td>IP</td>
<td>In progress</td>
<td>0</td>
</tr>
<tr>
<td>P</td>
<td>Passing grade (credit)</td>
<td>0</td>
</tr>
<tr>
<td>S</td>
<td>Satisfactory (noncredit)</td>
<td>0</td>
</tr>
<tr>
<td>X</td>
<td>Advanced standing credit granted for experience outside the University</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>Transfer credit</td>
<td>0</td>
</tr>
<tr>
<td>N</td>
<td>No grade submitted by instructor</td>
<td>0</td>
</tr>
<tr>
<td>W</td>
<td>Withdrawal from a course</td>
<td>0</td>
</tr>
<tr>
<td>WF</td>
<td>Withdrawal from the University - Failing</td>
<td>0</td>
</tr>
<tr>
<td>XP</td>
<td>Course Equivalency Examination passed & advanced standing granted</td>
<td>0</td>
</tr>
</tbody>
</table>
Grade Reports

Final grades are issued at the end of each semester. Students can access their grades immediately after they are posted, via Student Online Services. Students who have specifically requested a hard-copy grade report and supplied an address to the Records Office will be mailed an unofficial copy of their transcript.

The University is prohibited from releasing grade information without the express written authorization of the student. Such authorization must be granted each semester because blanket authorizations are prohibited by law.

Grade Point Averages:
GPA, CGPA

A semester grade point average (GPA) and cumulative grade point average (CGPA) are computed for each student after every semester. The GPA is calculated by dividing the number of grade points earned during the semester by the number of hours attempted in that period. The CGPA is determined by dividing the total number of grade points by the total number of hours attempted at the University. Grade points and hours attempted are accrued in courses graded A, B, C, D, F, and WF only.

Dropping a Course

Students may drop a course, with no notation of course enrollment on their transcripts, during the drop period only. The drop period extends through the third week of spring and fall semesters and the second week of summer terms.

Auditing a Course (AU)

Because students audit a course solely to enhance their knowledge, academic credit is not granted toward degree requirements for audited courses. Students may change their registration from audit to credit through the first five class days of the semester or the first three days for summer terms. Change from credit to audit requires an instructor’s signature until the last day of the withdrawal period, through the tenth week of the semester or the fourth week of the summer term. When a student auditing a course fails to maintain satisfactory attendance, as determined by the instructor, a grade of W will be assigned.

Withdrawing from a Course (W)

Students receive the grade W if they withdraw from a course by the end of the tenth week of spring and fall semesters and the fourth week of summer terms. If they withdraw from a course after this period, they receive an F. If students stop attending their classes and fail to withdraw from the University, an F is assigned for each course in which they were enrolled.

Students who withdraw from a flight course before their initial attempt at the final phase check receive a W.

Students may not drop or withdraw from a basic skills course without written permission from the chair of the department offering the course.

Students are not permitted to drop or withdraw from a course while a charge of academic dishonesty is pending.

Withdrawal from the University

Students who leave the University for any
reason must conduct an exit interview with the academic advisor in their college and officially process a withdrawal clearance through the Records Office. When a student withdraws from the University after the end of the scheduled withdrawal period, the end of the tenth week of the semester, or the end of the fourth week of summer terms, a WF grade will be assigned for all courses in which the student is enrolled unless an exception is granted for medical reasons or other extenuating circumstances.

Incomplete Grades (I)

In exceptional cases, faculty may assign the temporary grade of incomplete (I) if a student is unable to complete the required work in a course because of medical emergency, death in the family, military duty, or other extenuating circumstances. If a student does not complete the course by the end of the fourth week of the subsequent semester, the incomplete (I) automatically converts to an F.

Incomplete Flight Courses (IP)

Because the length of time required to complete flight courses varies and may not coincide with the end of the academic semester, the temporary grade IP is assigned for flight courses in which students are still actively flying. The grade of IP will be maintained until such time as the student completes the course and receives a letter grade.

Flight students may receive an F for excessive unexcused no-shows.

Repeating a Course

With the exception of flight courses, which may be repeated only once, a student may repeat any University course. The grade for each attempt will appear on the student’s permanent academic record. In determining the student’s CGPA, the grade for subsequent attempts at a course replaces the previous grade a maximum of two times. Only the last grade counts toward course completion.

Course Equivalency Exams

Students who believe they possess sufficient knowledge and who have not previously failed that particular course may apply to take the course equivalency examination for a limited number of courses. Course equivalency examinations must be completed prior to the time the student reaches the last 30 credits for a bachelor degree.

A nonrefundable fee is charged for administering each equivalency exam. Because students may take a course equivalency exam only once for each course, those failing a course equivalency examination must enroll in and complete the course to receive credit. Students submit their applications to the chair of the academic department offering the course.

Dean’s List and Honor Roll

Students who have demonstrated academic excellence during a semester receive a letter and certificate with a notation placed on their academic transcript by the Records Office. To be eligible for semester honors, students must be enrolled full-time, have completed all coursework for the semester, maintained at least a 2.00 CGPA, and must not have received a D or F during the semester. In addition, students must have achieved a semester GPA of 3.50-4.00 for inclusion on the Dean’s List or 3.20-3.49 for inclusion on the Honor Roll.
Undergraduate Academic Regulations and Procedures

Academic Warning, Probation, Suspension, and Dismissal

Warning
A student whose cumulative grade point average (CGPA) is less than 2.00 for one semester will be placed on academic warning. The academic program of a student on warning may be restricted by the College dean or designee.

Probation
A student whose CGPA is less than 2.00 for two consecutive semesters will be placed on academic probation. Students on probation are classified as students not in good standing and may not serve as elected members of the Student Government Association, may not participate in intercollegiate athletics as members of a University team, may not serve on the editorial staff of a campus publication or work on campus, and may lose eligibility for financial aid programs. The academic programs of students on probation may be restricted. Students who are placed on academic probation will be allowed to complete any flight course in which they are currently enrolled. However, they will not be allowed to enroll in subsequent flight courses until they return to good academic standing. A student who has a semester GPA of less than 1.00 may be placed on academic probation or suspension in accordance with University academic policies.

Suspension
A student whose CGPA is less than 2.00 for three consecutive semesters, or a student on academic probation whose CGPA at the end of the subsequent period is below 2.00, will be suspended from the University unless the student maintains a semester GPA greater than 2.00. A student who has a semester GPA of less than 1.00 may be placed on academic probation or suspension.

Dismissal
A student suspended for academic reasons and subsequently readmitted will be on probationary status until the CGPA has been raised to 2.00. If the semester GPA falls below 2.00 during the probationary period, the student will be dismissed. Any previously suspended and readmitted student who has been restored to good standing and whose academic performance subsequently deteriorates to a level that would qualify for initial suspension will be dismissed.

Students desiring to appeal an academic dismissal must submit a petition within 30 calendar days of notification, to the Director of the Records Office. The Director will forward the petition to the student’s College Dean. The student will provide documentation to the Dean and may appeal in person. The Dean will provide a decision, along with stipulated conditions for a dismissal reversal if appropriate. If the student is allowed to return, the dismissal statement will be removed from the student’s transcript.

The Dean is the final authority in the dismissal process. Once confirmed, the Academic dismissal is final and the student will not be readmitted to the University.

Suspension and Dismissal for Cause
The University reserves the right to suspend or dismiss a student at any time and without further reason, if the student exhibits the following undesirable conduct:
1. Actions that pose a risk to the health, safety, or property of members of the University community, including, but not limited to, other students, faculty, staff, administrative officers, or the student himself/herself;
2. Conduct that disrupts the educational process of the University;
3. Any other just cause.

Readmission
A student who has been suspended from the University for any reason must apply for readmission to the campus and college from which they were suspended.

A student who has been academically suspended may apply for readmission after 12 calendar months following the suspension or after completing a minimum of 15 hours of academic credit with a CGPA of 2.50 or higher from an accredited institution. If the University readmits such students, they will be admitted with probationary status.

Areas of Concentration and Minor Courses of Study
Areas of concentration give students specialized preparation in a degree program. Minor courses of study are coherent academic programs designed to satisfy students’ personal interests and to meet their professional needs. Students may consult with their program chairs or advisor if assistance is needed in choosing areas of concentration or minors. Once a decision is reached, students who wish to declare an area of concentration or minor should contact the Records Office. Some minor courses of study are not open to students pursuing particular degree programs. A minor must be in a discipline outside the student’s major field of study.

The student becomes subject to the requirements of the minor as stated in the catalog in effect at the time the minor is declared. The department chair responsible for a particular minor determines how students fulfill deficits in credits for a minor and certifies that students are qualified to receive the minor.

Areas of concentration and minor courses of study are posted on the student’s academic transcript at the time the student graduates with a baccalaureate degree.

Change of Degree Program
Students may apply to change their degree programs if they meet academic qualifications and if the degree program is not at capacity. Students should contact their current department chair to initiate the application.

When a student elects to change degree programs, or minors within a degree program, the requirements of the catalog in effect at the time the request was approved apply. Students considering such changes should contact their academic advisor or department chair to determine how they will be affected.

Two Degrees of the Same Rank
A student may pursue more than one bachelor’s degree concurrently and must declare which is to be considered the primary degree, for graduation purposes. For awarding of two bachelors degrees, students must complete all of the required courses for both degrees. The second degree must con-
tained a minimum of 25% more credit hours than is required for the primary degree; at least two-thirds of the additional hours must be in upper division (300-400) courses. At least 60 credit hours must be completed in residence at the University.

Continuous Enrollment
Students are considered to be continuously enrolled, regardless of the number of hours for which they register, unless they:

1. Enroll at another institution without advance written approval.
2. Fail to enroll in at least one course at Embry-Riddle in any two calendar year period.
3. Have been suspended or dismissed from the University.
 Students failing to maintain continuous enrollment for any reason are required to reapply for admission under the catalog in effect at that time.

Catalog Applicability
The catalog in effect at the time of a student’s initial matriculation remains applicable as long as the student remains in the original degree program.

If a student does not maintain continuous enrollment at the University, they must apply for readmission. The provisions of the catalog in effect at the time of readmission then become applicable to the student.

Curricular requirements stated in the applicable catalog will not be affected by subsequently published addenda to that catalog or by later catalogs unless the student elects to graduate under the provisions of a later catalog or addendum. Students electing to graduate under the provisions of a later catalog or addendum must meet all requirements (admission, transfer, graduation, and so on) contained in that catalog or addendum.

Attendance at Other Institutions
Once admitted to the University as degree candidates, students are expected to complete all work to be applied toward their degree with the University unless advance written authorization is granted.

Students in good academic standing must petition to receive credit for courses or training, including flight instruction, outside the University while maintaining enrollment at Embry-Riddle. Approval for flight instruction taken away from Embry-Riddle must be obtained, in writing, from the Flight Department.

To initiate this procedure, students must process a Petition to Take Courses at Another Institution. Students must provide adequate evidence that the petitioned courses are equivalent to Embry-Riddle courses or are acceptable as elective credit in their degree program. The Records Office evaluators will determine if the requested courses are equivalent and notify the student by returning the approved petition. After the courses are deemed equivalent, the petition is evaluated considering such factors as the reasons for petitioning and the availability of the courses in the University curriculum prior to approval. A course taken at another institution will not replace the grade of a previously completed Embry-Riddle course.

Students may not co-enroll at a local institution. Under certain circumstances, students may be allowed an exception to take
Undergraduate Academic Regulations and Procedures

courses at a local institution. If a student is nearing graduation and if schedule conflicts and/or course availability would unduly delay completion of degree requirements, the student may petition for a waiver from their College Dean or designee.

After initial matriculation, students may not earn more than 18 semester hours (or the equivalent) at another institution. The last 30 hours toward a bachelor’s degree must be completed in residence at Embry-Riddle.

Graduation Requirements

Students must complete the general graduation requirements as prescribed by the University, as well as all degree requirements specified in the degree being pursued. The following summary of graduation requirements is provided for all students:

1. **Students must initiate an application for graduation.** The application must be received by the Records Office within the time limit established by that office.

2. **Students must successfully complete all required courses for a particular degree listed in the applicable catalog.**

3. **Students must successfully complete the minimum number of credit hours required for the degree as listed in the applicable catalog.**

4. **Students pursuing a baccalaureate degree must complete the last 30 credit hours at the University.**

5. **Students pursuing a baccalaureate degree must complete a minimum of 40 credit hours in upper-division (300 and 400 level) courses.** Credit transferred from other institutions will be accepted at the discretion of Embry-Riddle.

Exceptions to the 40-hour upper-division requirement are authorized only when the specified required courses preclude achievement in the minimum credit hour requirements in the catalog listing for the degree. In such cases, all electives taken must be upper-level.

6. **For degree completion, at least 25 percent of semester credit hours must be earned through Embry-Riddle instruction.**

7. **Students pursuing any undergraduate degree must earn a minimum cumulative grade point average (CGPA) of 2.00 for all work completed at the University.** Candidates for the Bachelor of Science in Aerospace Engineering, Computer Engineering, Electrical Engineering, and Mechanical Engineering must also earn a minimum CGPA of 2.00 in all required core courses. Details are specified under the degree requirement headings of the Academic Programs section in this catalog.

8. **Students will not be issued a diploma or transcript of their records until all debts or obligations owed to the University have been satisfied.**

9. **Students will not be issued a diploma while on disciplinary probation.**

10. **Students will not be permitted to participate in the formal graduation ceremony until all the degree requirements listed above have been satisfied or a waiver has been approved by the student’s College Dean.** Students anticipating a summer degree completion may participate in the spring ceremony if they meet established guidelines.

11. **Under no circumstances will an official
diploma be awarded, or the student’s transcript annotated as complete, until all of the degree requirements indicated above have been satisfied and grades for all enrolled courses prior to degree completion have been posted to their transcript. Students enrolled in courses whose term ends after the graduation date (or beyond the incomplete period) will degree complete with the next scheduled graduation date.

12. Diplomas are mailed to the address provided by the student.

Graduation Honors

Graduation honors recognize students who have demonstrated excellent performance throughout their Embry-Riddle academic career. They are only awarded to students who complete baccalaureate degree programs. To be eligible, the student must have completed at least 45 credit hours in residence. The level of graduation honors will be based on the cumulative grade point average for all courses taken at Embry-Riddle. The honors level will appear on the student’s academic transcript with the degree information.

Graduation honors (baccalaureate only) will be awarded in accordance with the following criteria:

<table>
<thead>
<tr>
<th>Honors Level</th>
<th>CGPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summa Cum Laude</td>
<td>At least 3.90</td>
</tr>
<tr>
<td>Magna Cum Laude</td>
<td>At least 3.70</td>
</tr>
<tr>
<td>Cum Laude</td>
<td>At least 3.50</td>
</tr>
</tbody>
</table>

Transcript Requests

A signed request for an academic transcript, accompanied by a fee, must be submitted by the student to the Records Office. Transcripts will not be released to students who have failed to meet their financial obligations to the University. Students may request the delivery of an electronic transcript via the Scrip-Save Transcripts on Demand website: https://iwantmytranscript.com.

Privacy of Student Records

The University respects the rights and privacy of students in accordance with the Family Educational Rights and Privacy Act (FERPA). The University may disclose certain items of directory information without the consent of the student, unless the student submits a written non-disclosure request. Students are required to file requests for non-disclosure with the Records Office. Non-disclosure forms remain in place permanently, unless the office is notified otherwise.

Directory information consists of: student name; permanent or local mailing addresses and telephone numbers*; ERAU e-mail or box address; non-ERAU email addresses or account information*; date of birth*; major courses of study and areas of specialization; dates admitted, attended, and graduated; enrollment and class status; campus, school or college attended; degrees sought or earned and dates received or anticipated; awards, honors, and special programs or recognitions; most recent previous school attended; for student athletes and scholarship recipients the ERAU ID and photograph; factual disciplinary history, including results of pending disciplinary
processes at time of withdrawal*; information from public sources.*

*These Directory information items may be released without student consent, but only for compelling reasons and only with advanced approval of the Registrar.

The University shall obtain written consent from students before disclosing any personally identifiable information from their education records with the exception of the directory information. The receipt of a written request to release an education record via FAX satisfies this requirement. Such written consent must:

1. Specify the records to be released.
2. Specify the purpose of the disclosure.
3. Identify the party or class of parties to whom disclosure may be made and their address.
4. Be signed and dated by the student or former student.

The law authorizes students and former students the right to inspect and review information contained in their education records. The student must submit a written request to the Records Office. The Records Office must make the records available for inspection and review within 45 days from the request. FERPA allows disclosure of educational records or components thereof under certain conditions. Students desiring additional information regarding FERPA may contact the Records Office.

Flight Course Related Information

All flight training at Embry-Riddle is done in late model, fully equipped aircraft. In addition, procedures trainers and flight-training devices give the student a safe, flexible, and cost-effective training environment. The flight-training program operates under all applicable FAA rules, regulations, and requirements. The student is responsible for adhering to those rules, regulations, and requirements, which are contained in the Embry-Riddle Flight Operations Manual and local campus bulletins.

While flight training is an integral part of the Aeronautical Science program, it is also contained in other degree programs, either as an area of concentration, minor course of study, or as elective credit on a space-available basis. Students should investigate the applicability of certain courses to their program along with the necessary prerequisite/corequisite course requirements prior to making any commitment and investment.

Flight Course Scheduling

Students usually begin their initial flight course sometime during their first year in attendance. The exact start date depends on the academic preparation of the student, student desire, weather conditions, and aircraft and instructor availability. The length of time required to complete a course will also vary based on these same factors. All flight-training courses may begin and end at any time during the academic year and may not coincide with the beginning and ending dates of the published semester schedule. Therefore, students who begin a flight course late in the semester should be prepared for training in that course to continue into the next semester.

Flight courses require a minimum block of time and may include flying on weekends. Study, preparation, and some flight lessons may require time outside this block.
Students, particularly beginning students, are cautioned not to overload their course schedules when taking a flight course. Newly matriculated/enrolled flight students who possess the FAA Private Pilot Single Engine Airplane certificate, must register for AS 109 and FA 109. During the Add/Drop period at the beginning of this semester, they will be given the opportunity to take the final comprehensive examination for AS 109. If they pass with a grade of 70% or higher, they will be withdrawn from that class and permitted to enroll in the next higher class (AS 221 Instrument Airplane). Note: This course challenge can only be taken during the posted Add/Drop period listed in this catalog. All new students who hold a Private Pilot certificate for Airplane Single Engine Land must enroll in FA 109 for transition flight training. See the Embry-Riddle Flight Operations Manual for additional information on flight line policies and procedures.

Credit for Flight Training at Other Institutions
All students desiring to complete off-campus flight training for credit after matriculation must be approved in writing in advance by the Flight Department. The credit will be awarded as advanced standing, and the procedures for requesting credit when training is completed will be specified in the written approval (Off Campus Authorization Form). The following general rules apply as specified under each heading. Please address any questions to the Flight Department.

B.S. in Aeronautical Science
The Aeronautical Science (AS) degree is accredited by the Aviation Accreditation Board International (AABI) and is governed by the following criteria. Aeronautical Science students will be awarded credit for FAA certificates held prior to matriculation to Embry-Riddle and may be approved to complete one certificate or rating if flight training from an appropriately rated instructor was logged prior to matriculation. If FAA certificates are held, this training must have occurred after the attainment of the most recent certificate for which credit is granted. Except as provided above, after a student matriculates, all flight training must be completed at Embry-Riddle or approved at another AABI flight education accredited college or university. In all cases, students must satisfactorily complete at least one flight course on campus after advanced standing is awarded or AABI approved courses are transferred.

Flight Minors or Areas of Concentration
Individuals pursuing areas of concentration and minor courses of study that require a flight (FA or FH) course must satisfactorily complete at least one FA or FH course on campus after completion of the approved off-campus flight training. If students declare a change of program to the B.S. in Aeronautical Science degree, the advanced standing credit for flight training after matriculation may not transfer.

Open Elective Credit
Students who are not pursuing the B.S. in Aeronautical Science degree, Flight minor, or AOCs requiring FA courses, and who desire to complete off-campus flight training for credit after matriculation must receive approval by the Flight Department in writing and in advance of the anticipated training. If students declare a change of program
to the B.S. in Aeronautical Science degree, the advanced standing credit for flight training after matriculation may not transfer. Transferring to a Flight minor or Area of Concentration would necessitate satisfactorily completing at least one FA course on campus after the awarding of transfer credit and advanced standing.

Awarding Advanced Standing

Upon completion of the approved flight training, all students must show their copy of the approved Off Campus Training Authorization Request Form, in addition to the appropriate documents of their training, to the Flight Department. Approved advanced standing credit will be applied to the student’s transcript. See above restrictions regarding change of programs, AOC, and minor courses of study.

Aviation and Transportation Security Act

The Aviation and Transportation Security Act (ATSA) requires students registered for Flight (FA) courses to show acceptable documentation of U.S. citizenship OR complete background check requirements.

Students enrolled in an FA course must present ONE of the following to the Records Office prior to being allowed to start flight training:

1. A valid, unexpired U.S. passport
2. An original birth certificate with raised seal documenting birth in the U.S. or one of its territories
3. An original U.S. naturalization certificate with raised seal, Form N-550 or Form N-570
4. An original certification of birth abroad, Form FS-545 or Form DS-1350/FS 240 Consular Report of Birth
 - OR -
 An original certificate of U.S. citizenship, Form N-560 or Form N-561.

If using other than a valid passport, a valid driver license with a photo or a government-issued photo ID will also be required. Photocopies of the above are not acceptable, even certified copies. This process needs to be completed only one time for the entire curriculum at Embry-Riddle.

Those unable to complete the above requirements, including international and permanent resident alien students, will be able to register for FA courses but must comply with U.S. Department of Homeland Security (DHS) notification requirements. Before receiving any flight training, they must provide DHS, through the Transportation Security Administration (TSA) a set of fingerprints and an online application, including identification and a processing fee. This information and fee, but not the fingerprints, must be sent prior to beginning each initial rating during flight training and will be coordinated through the Flight Department Records office. Please contact the International Students Office or the Flight Department for more information.

Once the student is registered and has received authorization from the TSA, the student may begin training. Some advanced flight courses may require a waiting period of up to 30 days. If Embry-Riddle receives any directive from the DHS or TSA, the student may be administratively withdrawn as appropriate to the DHS or TSA directive.
Undergraduate Academic Regulations and Procedures

Mandatory Student Drug Testing

Success in the aviation industry requires a commitment to excel and the discipline to avoid unsafe practices. The use of illegal, synthetic or designer drugs constitutes an unsafe practice and is incompatible with an aviation environment. Therefore, the University reserves the right to immediately suspend or dismiss any student who uses or possesses illegal, synthetic or designer drugs. In the effort to maintain a work and educational environment that is safe for its employees and students, the University has established a mandatory student drug testing program.

Scope

The drug testing program applies to all students who engage in flight training at the University. The University tests for drugs, alcohol and any other substance which may compromise safety as follows:

1. Random testing of students engaged in flight training.
2. Required post-accident testing for students involved in an aircraft accident. Students are tested for drugs within 32 hours after an accident. An accident is defined as any occurrence associated with the operation of an aircraft that results in any person suffering death or serious injury, or where the aircraft receives substantial damage as determined by the National Transportation Safety Board. The accident can occur at any point between the time a person boards the aircraft with the intention of flight and the time all have disembarked. In the event that drug testing is required, students who fail to comply with testing procedures, refuse to be tested, or test positive for illegal drugs are subject to the following actions:
 a. Students who fail to comply with all University directives concerning the place of testing, the manner in which they are to arrive at the test site, and any other related matters are subject to disciplinary action up to and including dismissal from the University.
 b. Students who refuse to be tested after being requested to do so by the University will be dismissed from the flight program and possibly the University.
 c. Students whose test results show positive for the use of an illegal, synthetic, designer or nonprescribed drug, as verified by a medical review officer, will result in dismissal from the Flight program and possible dismissal from the University.

Testing

The cost of drug testing is the responsibility of the University. Embry-Riddle has contracted with a professional testing service as the certified laboratory for the collection and analysis of test specimens. This testing service will adhere to all requirements for chain of custody, test reporting, and specimen retention in accordance with proposed DOT and FAA regulations.

Notification

Students applying to attend the residential campuses are notified of the drug testing requirement through various University publications. The drug testing policy is also explained on appropriate flight course registration forms.
Medical Marijuana
Arizona voters recently approved the Arizona Medical Marijuana Act (Proposition 203), which, under certain circumstances, authorizes the possession and use of marijuana for medical purposes by people with debilitating medical conditions who obtain a written certification from a physician. Notwithstanding the passage of Proposition 203, because of the University’s obligations under federal law, marijuana, including medical marijuana, will continue to be banned on campus. Additionally, campus health care providers, in accordance with federal law as well as University policies and regulations, will not prescribe medical marijuana.

Student Education and Assistance
Embry-Riddle promotes substance abuse awareness by sponsoring educational programs and distributing literature. The University is additionally committed to assisting students in the resolution of problems associated with substance abuse and encourages students to seek additional help through referrals from the University Health Services and Counseling Offices.

Student Grievance Procedure
It is the policy of Embry-Riddle to administer its educational programs in a fair, equitable, academically sound manner and in accordance with the appropriate regulations and criteria of its governing board, accrediting associations, and federal and state laws and regulations. To this end, students are provided an opportunity to express any complaint, grievance, or dispute that upon investigation may be remedied.

Students are first encouraged to address their grievance, whether personal or academic, directly with the appropriate faculty/staff member with responsibility concerning the issue. This is considered an “Informal” process and is meant to empower the student to confront the source of their concern, as well as minimize the length of time involved in achieving a resolution. If no agreement is reached, students may choose to put their grievance in writing directly to the next appropriate department head or director with responsibility for the area of concern. Students may seek assistance from the Dean of Students office to file and process a formal written grievance. Any student, at any time may choose to file a formal written grievance with the Dean of Students office. The Dean of Students office will provide advice and guidance to students who present grievances or complaints, whether personal or academically related. Appeals concerning previously assigned grades are specifically addressed through the academic administrative chain, beginning with the course instructor (See Grade Appeal Process).

Formal Process
University committees/boards, which include student members, are available to process formal appeals when the informal mechanisms have been exhausted.

Academic Issues / Student Status
The Academic and Admissions Standards Committee is an appeal board designated to resolve any conflict with Academic Procedures or Policies. This committee makes recommendations to the Academic Deans. Additional information regarding the Academic and Admission Standards Committee, including how to initiate the process, may be obtained at the Records Office.
Grade Appeal Process
Students are first encouraged to informally address their issues of concern regarding grades with the course instructor. If a resolution cannot be reached, students may initiate the formal procedure by submitting a Final Course Grade Challenge form to the Chair of the department responsible for the course outlining the reasons in detail. The student is encouraged to discuss the grade challenge with the department chair for a solution at this level. The student may obtain the Final Course Grade Challenge form and instructions from the Records Office or the Department Chair. This form must be submitted to the appropriate Department Chair no later than four weeks after the start of the subsequent semester (not including summer terms.)

Reference: Prescott Academic and Administrative Policies 2-3

Student Rights/Disciplinary Appeals
The Student Affairs Student Conduct Board may be convened to consider cases of alleged misconduct in which a student appeals the charges of misconduct brought against him/her. These are cases in which a student wants to request a review of Sanction Levels IV - VII imposed by a department or University personnel, or cases in which a student feels persons or agencies at the University have violated his/her rights. The Student Affairs Student Conduct Board is composed of a student chief justice, two student justices, and two staff/faculty justices. Students may elect to adjudicate an appeal through a University Administrator rather than the Student Affairs Student Conduct Board. The supervisor of the University Student Conduct officer that made the original decision may serve as the appeal administrator. Applications for hearing or appeal are available through the Dean of Students Office.

If the student complaint cannot be resolved after exhausting the institution’s grievance procedure, the student may file a complaint with the Arizona State Board for Private Postsecondary Education.

The student must contact the State Board for further details.

Arizona State Board for Private Postsecondary Education
1400 W. Washington, Room 260
Phoenix, AZ 85007
Phone: (602) 542-5709
Website: http://azppse.state.az.us
Graduate Regulations and Procedures

All University graduate academic and non-academic procedures and regulations are subject to change. Therefore, all procedures and regulations in effect at a given time may not be reflected in the current catalog. When such changes do occur, notice of the change will be incorporated into the next catalog. Catalogs are effective on the date published unless otherwise stated.

Student Responsibilities

Students are responsible for being fully informed about all procedures and regulations governing their participation in Embry-Riddle’s graduate programs. The necessary information may be found in the appropriate sections of this catalog, the Student Handbook, orientation and information packets published and distributed by the campus, and periodic announcements published by the University. A student who requires clarification of any policy or regulation should seek help from his/her academic advisor or the Records Office. University regulations will not be waived because a student is unaware of established standards and procedures.

Academic Advising

Academic advisors help students choose and schedule courses that meet their educational goals.

Academic advisors post a schedule of office hours, and students should feel free to call on their advisors when assistance or discussion is needed.

Registration

Students are required to register for each semester and are encouraged to use web registration. Tuition deposits, registration, and fee payments must be completed according to instructions published by the Records Office. Students are not officially enrolled until they complete all phases of registration, including financial requirements.

Registration will be allowed through the first five class days for fall and spring and the first three class days of summer terms.

Schedule of Classes

A schedule of classes is prepared for each semester. The University reserves the right to make necessary and appropriate adjustments to the published schedule to include cancellation or rescheduling of any class.

Academic Integrity

Embry-Riddle is committed to maintaining and upholding intellectual integrity. The faculty, colleges, divisions, or campuses of the University may impose sanctions on students who commit the following academic integrity violations.

1. Cheating: The use of inappropriate sources of information on a test or being a party to obtaining or possessing an examination before the time the examination is scheduled.

2. Plagiarism: Presenting as one’s own the ideas, words, or products of another.

3. Forgery and unauthorized alteration or misuse of one’s own or another’s academic records or transcripts.
Graduate Academic Regulations and Procedures

4. Knowingly furnishing fake or misleading information to the University when seeking admission to the University or campus.

5. Forging, altering, falsifying, destroying, or unauthorized use of a University document, record, or identification. This includes using the logo, stationery, or business cards of the University or otherwise identifying oneself as an agent of the University for personal, non-University business.

6. Misuse of computing facilities and/or security violations, including attempted violations of computing facilities.

7. Conduct that disrupts the educational process of the University. Sanctions may include a failing grade on the assignment, a failing grade for the course, or dismissal from the University.

Exclusion from Courses

A student making no real progress in a course or whose behavior is detracting from the course may be excluded from the course by the appropriate dean or designee with a grade of W or WF. Students have five calendar days following written notification of this exclusion in which to appeal. Until the final disposition of the appeal, the student is considered enrolled in the course.

Course Loads

While full-time status is six credits, students are expected to carry nine credit hours per semester. Courses above nine credit hours require permission from the appropriate department chair. If a student demonstrates exceptional academic performance, the department chair or designee may approve a maximum one-course overload. A student’s enrollment may be restricted when deemed in the best interest of the student.

Grading System

The following indicators used on grade reports and transcripts signify the quality of a student’s academic performance.

<table>
<thead>
<tr>
<th>Letter Grade</th>
<th>Student Performance</th>
<th>Grade Points Per Credit Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Excellent</td>
<td>4</td>
</tr>
<tr>
<td>B</td>
<td>Satisfactory</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>Passing</td>
<td>2</td>
</tr>
<tr>
<td>F</td>
<td>Failure</td>
<td>0</td>
</tr>
<tr>
<td>WF</td>
<td>Withdrawal from the University-Failing</td>
<td>0</td>
</tr>
<tr>
<td>W</td>
<td>Withdrawal from a course</td>
<td>0</td>
</tr>
<tr>
<td>AU</td>
<td>Audit</td>
<td>0</td>
</tr>
<tr>
<td>I</td>
<td>Incomplete (Passing)</td>
<td>0</td>
</tr>
<tr>
<td>IP</td>
<td>In Progress</td>
<td>0</td>
</tr>
<tr>
<td>N</td>
<td>No grade submitted by instructor (also used for xx690C when a student fails or completes a GRP)</td>
<td>0</td>
</tr>
<tr>
<td>P</td>
<td>Passing grade (applies to the grading of the Graduate Internship, GRP, or Thesis)</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>Credit accepted by transfer</td>
<td>0</td>
</tr>
</tbody>
</table>

Grade Reports

Final grades are issued at the end of each semester. Students can access their grades immediately after they are posted through Student On-Line Services. Students who have specifically requested a hard copy grade report and supplied an address to the Records Office will be mailed an unofficial copy of their transcript.
The University is prohibited from releasing grade information without the express written authorization of the student. Such authorization must be granted each semester because blanket authorizations are prohibited by law.

Unit of Credit

Semester credits are used throughout the University system. Transferred quarter hours will be converted to semester credit hours on the following basis: A quarter hour equals two-thirds of a semester hour.

Grade Point Averages: GPA, CGPA

A semester grade point average (GPA) and cumulative grade point average (CGPA) are computed for each student after every semester. The GPA is calculated by dividing the number of grade points earned during the semester by the number of hours attempted in that period. The CGPA is determined by dividing the total number of grade points by the total number of hours attempted at the University. Grade points and hours attempted are accrued in courses graded A, B, C, F, and WF only.

Thesis Registration and Grading

Registration

1. A student is expected to register for at least one hour of thesis credit from the time the student begins the thesis until it is completed. Academic credit will be granted only for the number of hours designated in the Graduate Catalog for the thesis for the degree being pursued.

2. Students who register for thesis during the summer sessions must register for the entire summer (also known as “summer C”).

3. An interruption in thesis registration requires written approval in advance from the department chair or designee and is permissible only for educationally sound reasons and only if the student is not making use of University facilities or personnel. Failure to obtain permission will result in a change from IP to F for all thesis credits.

4. The maximum number of credits a student may take at the 700 level is seven. Special permission of the Chief Academic Officer is required to register for additional credits.

Grading

1. A student enrolled for a thesis will receive a grade each term, as determined by the student’s thesis committee. If the student is making progress toward completion of the thesis, a grade of IP will be issued. If the student has not made progress, a grade of F will be issued and will result in a change from IP to F for all thesis credits.

2. Upon completion of the thesis a final grade of P or F will be awarded. That grade will replace the IP for all terms in which the student was enrolled for the thesis course.

3. A student who receives a thesis grade of F and wishes to repeat the course must register for the number of thesis hours required by the degree program plus any continuation credit taken, up to a maximum of 7 hours.
Graduate Academic Regulations and Procedures

Graduate Research Project (GRP) Registration and Grading

Registration
1. The initial registration for the GRP course is three semester/term credit hours (course designation xx690). Thereafter, the student is expected to register for one hour of GRP each term/semester until the GRP is completed (course designation xx690C). Both xx690 and xx690C will appear on a student’s transcript, but academic credit is only granted for xx690.

2. Students who register for GRP during the residential campus summer sessions must register for the entire summer (also known as “summer C”).

3. An interruption in GRP registration requires written approval in advance from the department chair or designee and is permissible only for educationally sound reasons and only if the student is not making use of University facilities or personnel. Failure to obtain permission will result in a change from IP to F for xx690 and from IP to N for xx690C.

4. Students may register for one additional consecutive semester/term only, unless approval is given by the Dean and CAO.

Grading
1. A student enrolled for a GRP will receive a grade each term, as determined by the student’s project review committee. If the student is making progress toward completion of the GRP, a grade of IP will be issued. If the student has not made progress, a grade of F will be issued and will result in a change from IP to F for xx690 and from IP to N for xx690C.

2. Upon completion of the GRP, a final grade of P or F will be awarded. That grade will replace the IP for xx690. All grades of IP will change to N for xx690C.

3. A student who receives a GRP grade of F and wishes to repeat the course must register to repeat xx690.

Internship Grading
A final grade of P or F is awarded upon completion of a graduate internship.

Dropping a Course
Students may drop a course, with no notation of course enrollment on their transcripts, during the drop period only. The drop period extends through the third week of spring and fall semesters and the second week of summer terms.

Auditing a Course (AU)
Because students audit a course solely to enhance their knowledge, academic credit is not granted toward degree requirements for audited courses. Students may change their registration from audit to credit during the add period only: the first five class days of spring or fall semester and the first three class days of summer term. They may change from credit to audit until the last day of the withdrawal period: the end of the tenth week for fall and spring and the end of the fourth week of summer terms. When a student auditing a course fails to maintain satisfactory attendance, as determined by the instructor, a grade of W will be assigned.

Withdrawing from a Course (W)
Students receive a grade of W if they withdraw from a course before the end of the
tenth week of spring and fall semesters and the end of the fourth week of summer terms. If they withdraw from a course after this period, they receive a grade of F. If students stop attending their classes and fail to withdraw from the University, a grade of F is assigned for each course in which they were enrolled.

Students are not permitted to drop or withdraw from a course while a charge of academic dishonesty is pending.

Incomplete Grade (I)

In exceptional cases, faculty may assign the temporary grade of incomplete (I) if a student is unable to complete the required work in a course because of medical emergency, death in the family, military duty, or other extenuating circumstances. If a student does not complete the course in the specified period, the grade of I automatically converts to an F.

The period to convert an I in a graduate course extends through a time period determined by the instructor, but no later than the end of the first calendar month following the end of the semester in which the I grade was assigned. The Dean or CAO may waive/extend this period.

Repeating a Course

Students may petition the graduate coordinator of their degree program to repeat one course in which less than a grade of B was earned for the purpose of improving their grade point average. Both grades earned appear on the transcript, but only the replacement grade is included in the calculation of the grade point average. This applies to thesis credit as well. For purposes of repeating a course, all credits for GRP or thesis will be considered as one course.

Undergraduate Enrollment in Graduate Courses

During their senior year, Embry-Riddle undergraduate students may take selected Embry-Riddle graduate courses, normally 500-level, for credit toward their undergraduate or graduate degree. Students must be within 10 hours of completion of the undergraduate degree, have the approval of the program coordinator of the appropriate graduate program, and have at least a 2.50 CGPA to qualify for enrollment in graduate courses while an undergraduate.

Academic Warning and Dismissal

Warning

Students whose cumulative grade point average (CGPA) falls below 3.00 are placed on Academic Warning. Students on Academic Warning must raise their cumulative grade point average to 3.00 in the next 12 hours of graduate work.

Dismissal

Students will be dismissed from their graduate program whenever any of the following conditions occur:

1. Students on conditional status who fail to satisfy the conditions of their admission;
2. A final grade of less than B is received in any three graduate courses.
3. A final grade of F has been received for any two graduate courses.
4. A final grade of F is received in any course worth 6 credit hours or more.
5. The cumulative grade point average has not been raised to at least 3.00 within the first twelve graduate hours attempted after the semester/term in which the student is placed on academic warning.
6. Earn less than a 2.50 cumulative grade point average.

Students may appeal their first academic dismissal from the University by submitting a petition in writing detailing the existence of any exceptional mitigating circumstances to the Chief Academic Officer or designee within 30 days of the receipt of the dismissal notice. The CAO or designee will refer the petition to the appropriate appeals committee for recommendation. Upon recommendation of the appeals committee, the CAO or designee reviews the case and makes the final determination of the action to be taken. Such action will be taken in a timely manner not to exceed 30 days of the receipt of the petition. If confirmed, academic dismissal is entered on the student’s permanent record and is final.

Students may only appeal a dismissal one time.

Dismissal for Cause

The University reserves the right to dismiss a student at any time and without further reason, if the student exhibits the following undesirable conduct:

1. Actions that pose a risk to the health, safety, or property of members of the University community, including, but not limited to, other students, faculty, staff, administrative officers, or the student himself/herself;
2. Conduct that disrupts the educational process of the University;

3. Any other just cause as determined by the University.

Transfer Between Graduate Degree Programs

A graduate student who wishes to transfer from one program to another must prepare a written petition before the transfer will be considered. Requests for transfer of credits from Embry-Riddle or other institutions and/or advanced standing credits should be included in this petition.

The department responsible for the new program, however, has the prerogative to accept or reject the student’s request and to determine the courses applicable to the new program. Students should contact the appropriate graduate program coordinator.

When a student elects to transfer from one degree program to another, the catalog in effect when the transfer is approved is applicable.

Additional Graduate Degrees

A graduate student is allowed to apply up to 12 applicable credit hours from one graduate degree program to meet the requirements of another graduate degree program. In order to be awarded a second graduate degree, the student must satisfy all the requirements of the degree sought.

Catalog Applicability

The catalog in effect at the time of the student’s initial matriculation remains applicable as long as the student remains in the original degree program. If a student does not maintain continuous enrollment at the University, the student must apply for readmission. The provisions of the catalog
in effect at the time of readmission then become applicable.

Students who change from one graduate degree program to another come under the provisions of the catalog in effect on the date the change of program petition was approved.

Curricular requirements stated in the applicable catalog will not be affected by subsequently published addenda or by later catalogs unless the student elects to change catalogs with the approval of their department chair.

Time Limitation for Degree Completion

The student has seven years from the date of admission to the master’s degree program to complete the degree. An Embry-Riddle course older than seven years at the time of graduation may not be used in the program of study for a master’s degree. (Prerequisite courses are exempt from this requirement.) Transfer courses older than seven years, earned at other universities, may be accepted at the discretion of the appropriate program chair. Students who do not maintain continuous enrollment (missing enrollment at the University for a period of two years) must file for readmission to the University, although seven years is measured from when the student was first admitted to the program.

Loss of Graduate Status and Readmission

Under certain circumstances (other than graduation), a graduate student may lose graduate status and will no longer be considered a student at Embry-Riddle. This can occur when:

- A student voluntarily withdraws from the University.
- A student is dismissed from the University and the dismissal becomes final.
- A student fails to meet the requirement for continuous enrollment. This occurs when a student does not enroll in at least one semester in a two-year period.
- A student does not complete the degree requirements of a graduate program within seven years of starting the graduate program.

Students who fail to maintain continuous enrollment for any reason are required to apply for readmission under the catalog in effect at that time.

Withdrawal from the University

Students who leave the University for any reason should conduct an exit interview with the Safety Science Department Chair or designee and officially process a withdrawal clearance through the Records Office. When a student withdraws from the University after the end of the scheduled withdrawal period, a WF grade will be assigned for all courses in which the student is enrolled unless an exception is granted by the college dean or designee for medical reasons or other extenuating circumstances.

Graduation Requirements

The following summary of graduation requirements is provided for all students. An Embry-Riddle master’s degree will be conferred upon the successful completion of the general requirements of the University and the specific requirements of the degree sought.
1. All courses, theses, GRPs, and other academic requirements must be successfully completed as appropriate for the applicable catalog.
2. Students pursuing a master’s degree must earn a minimum cumulative grade point average (CGPA) of 3.00 for all work completed at the University.
3. The student is not on Academic Warning.
4. All debts and obligations to the University are satisfied.
5. The student is not under University investigation for misconduct or other disciplinary matters.
6. A student must be enrolled in the semester in which he/she graduates.
7. An application for graduation must be initiated by the student and received in the time limit specified by the Records Office.
8. Participation in graduation exercises will not be permitted, a diploma will not be awarded, nor a transcript annotated as complete, until all of the degree requirements have been satisfied.

Graduation Honors
Graduation honors recognize students who have completed a graduate degree program and who have excelled academically throughout their graduate careers. To be eligible, graduate students must have completed their degree program with an Embry-Riddle cumulative grade point average of 4.00 based on grades received in all courses that apply to specific degree requirements. The student’s diploma and transcript will be annotated WITH DISTINCTION.

Transcript Requests
A signed request for an academic transcript, accompanied by a fee, must be submitted by the student to the Records Office. Transcripts will not be released to students who have failed to meet their financial obligations to the University. Students may request the delivery of an electronic transcript via the Scrip-Save Transcripts on Demand website: https://iwantmytranscript.com.

Student Education and Assistance
Embry-Riddle promotes substance abuse awareness by sponsoring educational programs and distributing literature. The University is additionally committed to assisting students in the resolution of problems associated with substance abuse and encourages students to seek additional help through referrals from University Health Services and Counseling offices.

Medical Marijuana
Arizona voters recently approved the Arizona Medical Marijuana Act (Proposition 203), which, under certain circumstances, authorizes the possession and use of marijuana for medical purposes by people with debilitating medical conditions who obtain a written certification from a physician. Notwithstanding the passage of Proposition 203, because of the university’s obligations under federal law, marijuana, including medical marijuana, will continue to be banned on campus. Additionally, campus health care providers, in accordance with federal law as well as university policies and regulations, will not prescribe medical marijuana.
Privacy of Student Records

The University respects the rights and privacy of students in accordance with the Family Educational Rights and Privacy Act (FERPA). The University may disclose certain items of directory information without the consent of the student, unless the student submits a written non-disclosure request. Students are required to file requests for non-disclosure with the Records Office. Non-disclosure forms remain in place permanently, unless the office is notified otherwise.

Directory information consists of: student name; permanent or local mailing addresses and telephone numbers*; ERAU e-mail or box address; non-ERAU email addresses or account information*; date of birth*; major courses of study and areas of specialization; dates admitted, attended, and graduated; enrollment and class status; campus, school or college attended; degrees sought or earned and dates received or anticipated; awards, honors, and special programs or recognitions; most recent previous school attended; for student athletes and scholarship recipients the ERAU ID and photograph; factual disciplinary history, including results of pending disciplinary processes at time of withdrawal*; information from public sources.*

*These Directory information items may be released without student consent, but only for compelling reasons and only with advanced approval of the Registrar.

The University shall obtain written consent from students before disclosing any personally identifiable information from their education records with the exception of the directory information. The receipt of a written request to release an education record via FAX satisfies this requirement. Such written consent must:

1. Specify the records to be released.
2. Specify the purpose of the disclosure.
3. Identify the party or class of parties to whom disclosure may be made and their address.
4. Be signed and dated by the student or former student.

The law authorizes students and former students the right to inspect and review information contained in their education records. The student must submit a written request to the Records Office. The Records Office must make the records available for inspection and review within 45 days from the request. FERPA allows disclosure of educational records or components thereof under certain conditions. Students desiring additional information regarding FERPA may contact the Records Office.

Student Grievance Procedure

It is the policy of Embry-Riddle to administer its educational programs in a fair, equitable, academically sound manner and in accordance with the appropriate regulations and criteria of its governing board, accrediting associations, and federal and state laws and regulations. To this end, students are provided an opportunity to express any complaint, grievance, or dispute that upon investigation may be remedied.

Students are first encouraged to address their grievance, whether personal or academic, directly with the appropriate faculty/staff member with responsibility concerning the issue. This is considered an “Informal” process and is meant to empower the student to confront the source of their concern, as well as minimize the length of time involved in achieving a resolution. If no
agreement is reached, students may choose to put their grievance in writing directly to the next appropriate department head or director with responsibility for the area of concern. Students may seek assistance from the Dean of Students office to file and process a formal written grievance. Any student, at any time may choose to file a formal written grievance with the Dean of Students office. The Dean of Students office will provide advice and guidance to students who present grievances or complaints, whether personal or academically related. Appeals concerning previously assigned grades are specifically addressed through the academic administrative chain, beginning with the course instructor (See Grade Appeal Process).

Formal Process

University committees/boards, which include student members, are available to process formal appeals when the informal mechanisms have been exhausted.

Academic Issues / Student Status

The Academic and Admissions Standards Committee is an appeal board designated to resolve any conflict with Academic Procedures or Policies. This committee makes recommendations to the Academic Deans. Additional information regarding the Academic and Admission Standards Committee, including how to initiate the process, may be obtained at the Records Office.

Grade Appeal Process

Students are first encouraged to informally address their issues of concern regarding grades with the course instructor. If a resolution cannot be reached, students may initiate the formal procedure by submitting a Final Course Grade Challenge form to the Chair of the department responsible for the course outlining the reasons in detail. The student is encouraged to discuss the grade challenge with the department chair for a solution at this level. The student may obtain the Final Course Grade Challenge form and instructions from the Records Office or the Department Chair.

Reference: Prescott Academic and Administrative Policies 2-3

Student Rights/Disciplinary Appeals

The Student Affairs Student Conduct Board may be convened to consider cases of alleged misconduct in which a student appeals the charges of misconduct brought against him/her. See Student Conduct in the Student Life section of this catalog for more information.

If the student complaint cannot be resolved after exhausting the institution’s grievance procedure, the student may file a complaint with the Arizona State Board for Private Postsecondary Education.

The student must contact the State Board for further details.

Arizona State Board for Private Postsecondary Education

1400 W. Washington, Room 260, Phoenix, AZ 85007
Phone: (602) 542-5709
Website: http://azppse.state.az.us
Financial Information

Student Accounts
At the time of acceptance for admission, a University account is opened for each student. This account remains open until graduation. The primary use of this account is for University charges and payments. If an account shows credit balances, a student may request a refund in the form of cash or check or a transfer to an Eagle Card Account. A student may also complete an authorization and have these funds directly deposited to a checking account. Each student is encouraged to open and maintain an account at a local bank for personal matters.

Billing Statements
Residential campus students are assigned an Embry-Riddle email address, which is their primary address for all University correspondence.

Students must sign up to receive Online Billing statements in order to view their charges and/or make payments. Monthly statements will be emailed if there is an outstanding balance. Statements can be emailed to up to three addresses by requesting PIN numbers for each recipient (parent, grandparent, etc.). Sign up for this service at: https://bosebill.salliemae.com/netpay/templates/268/frameset268.html.

Students may also use the Account Statement feature, found in ERNIE on the Student Services tab, which provides detailed information on past payments, third-party or financial aid based payments, and current debts. To find the Account Statement, students must login to ERNIE, at www.erau.edu, using their secure ERAU ID and password.

It is important that students check their account statements often, especially at the beginning and end of each semester. At any time during the semester, students can track account activity to ensure that no unwanted holds appear on their accounts. Financial holds from the library, parking services, etc., can prevent students from registering for classes or from receiving transcripts and diplomas.

Payment Procedures
Cash, Visa, MasterCard, Discover, American Express, and personal checks are acceptable forms of payment. Payments made by mail should be addressed to the campus Cashier’s Office, 3700 Willow Creek Rd., Prescott AZ 86301, and timed to arrive prior to the due date. Charges incurred subsequent to registration are due 30 days from the date of invoice or the last day of classes, whichever occurs first. All payments should include the student’s name and identification number.

Payments can also be made at: https://bosebill.salliemae.com/netpay/products/erau/applyyourself/tuitionandfees/370/gateway.aspx.

An invoice for tuition and fees will be issued for all registered students approximately 30 days prior to the due date. This bill is due 10 days prior to the start of the term. Accounts will be considered delinquent after the first day of the term.

Books and Supplies
Purchases are made directly from the University Bookstore. Cash, checks, Eagle Dollars, Visa, MasterCard, American Express, and Discover are accepted. Students whose estimated financial aid is higher than the total amount for tuition and fees may request these funds from the Cashier’s Office for book purchases.
Financial Information

Delinquent Accounts

When a student’s account is delinquent, registration for that term is subject to cancellation and registration for any subsequent semester will be denied. Delinquency will result in administrative withdrawal from the University. Administrative withdrawal will not relieve a student of the obligation to pay outstanding debts. A delinquent student account will result in suspension of all academic processing and information on class performance, grades, and transcripts will be withheld.

Sums remaining unpaid may be charged interest at the maximum rate allowed by law. The student is also subject to the costs of collection, including collection agency fees (33-50%) and reasonable attorney’s fees for making such collection. Delinquent accounts may be reported to one or all three major credit bureaus.

Embry-Riddle Aeronautical University is a not-for-profit institution of higher learning. As such, student receivable accounts are considered to be educational loans offered for the sole purpose of financing an education and are not dischargeable in bankruptcy proceedings.

Financial Responsibility for Tuition, Fees and Other University Charges:

• Electronic Communication Policy: Students registering for classes or obtaining other goods and services provided through Embry- Riddle Aeronautical University are advised that the Cashier’s Office provides all financial account information using online secured portals via Blackboard. Account Statements and other categories of financial information are available for viewing 24/7 by logging into ERNIE and going to the Student Services Tab.

We also send you important notices via your ERAU email account. It is your responsibility to review your ERAU account status and email account twice weekly and make payment by the published due date.

• You will need to contact the Cashier’s Office in writing if you choose not to have your accounts receivable charges paid with your financial aid disbursement. However, this may delay your disbursement.

• If you are receiving a loan, you are obligated to repay the amount of your loan in accordance with the terms outlined in your Promissory Note.

• It is your responsibility to either pay or make arrangements to satisfy all University debts, which may exceed your financial aid, on or before the tuition payment deadline.

• Pre-term tuition bills are sent to registered students 30 days prior to the due date of each semester.

Residential Campus Tuition and Fees

Fall 2011 / Spring 2012 Tuition

Students registering for coursework during the spring or fall term totaling 12-16 credit hours are billed according to a “block tuition” rate. Registration for coursework equaling 1-11 credit hours is charged on a per-credit-hour basis. Students whose undergraduate course loads during fall or spring semesters are greater than 16 hours are charged the semester rate plus a per-credit-hour charge for those credit hours over 16.
A student with more than 27 completed institutional credit hours and a cumulative GPA of 3.00 or higher may enroll for up to 18 credit hours, in a fall or spring semester, with no increase in tuition for hours over the block. Completed institutional credit hours and a cumulative GPA at the end of the spring semester will be used for fall semester eligibility. Completed institutional credit hours and a cumulative GPA at the end of the summer semester will be used for spring eligibility.

Summer tuition rates are determined solely by the number of credit hours per term. Each summer term is billed separately.

Detailed tuition rates are described in the 2011/2012 financial insert and at: http://www.erau.edu/er/costs.html.

Mandatory Fees
The following fees are mandatory where applicable. Please see the financial insert or http://www.erau.edu/er/costs.html.

- Student Government Association fee
- Health service fee
- International student service fee
- Insurance
- Technology fee

User Fees
Other fees apply for services that are not considered mandatory. Please see the financial insert or http://www.erau.edu/er/costs.html.

A graduate internship fee based on the cost of one credit hour in a student’s degree program is charged for the semester of internship.

Hourly Flight Rates
Rates vary by type of aircraft or simulator. Please see the financial insert applicable to your campus for specific rates.

Payment for Flight Instruction
The University uses a “Pay-As-You-Go” system for all flight instruction, and payment is expected at the completion of each training activity. Following each activity, the instructor and student validate the charges calculated by Embry-Riddle’s Education & Training Administration (ETA) system by entering their PIN numbers (electronic signature) into the system. Students then pay for the activity online using one of a variety of methods including Credit/Debit Cards, Eagle Card Flight Account, Eagle Dollars, or their Student Account (requires a positive Student Account balance). Students may not check-in for any subsequent activities until outstanding balances are paid.

In order to ensure continuity of training, it is important to have adequate funds to start and complete each course. If finances become an issue during a course, students should contact their Flight Training Manager immediately.

Payment for Helicopter Instruction
The University uses an outside contractor to provide helicopter flight training. Payment is made “Pay-As-You-Go.” Eagle Card Flight Dollars are the only accepted form of payment. Students are required to deposit adequate funds in order to start training.

Refund Policy
During the fall and spring terms, only those students who officially withdraw from all classes through the Records Office are eligible for a percentage refund of the charges.
indicated below. The effective date of the withdrawal, as determined by the Records Office, governs the refund computations. There will be no tuition refund for reductions of hours after the last day of add/drop.

During summer terms, refunds are calculated on a per course basis and withdrawal from all classes is not necessary to obtain a refund. The effective date of withdrawal, as determined by the Records Office, governs the refund computations.

Students who are suspended for disciplinary reasons will not be eligible for a full or percentage refund. Please reference the Withdrawal/Refund Schedule.

The following are refundable according to the Withdrawal/Refund Schedule:

- Tuition
- Student Government Association fees
- Housing fees (minus cancellation fee)
- International student service fee
- Health service fee
- Technology fee
- Meal plans

Cancellation and Refund Policy:

Three-Day Cancellation
An applicant who provides written notice of cancellation within three days (excluding Saturday, Sunday, and federal or state holidays) of signing an enrollment agreement is entitled to a refund of all monies paid. No later than 30 days of receiving the notice of cancellation, the University shall provide the 100% refund.

Other Cancellations
An applicant requesting cancellation more than three days after signing an enrollment agreement and making an initial payment, but prior to entering the University, is entitled to a refund of all monies paid.

University Withdrawal/Refund Schedule

<table>
<thead>
<tr>
<th>Period</th>
<th>Class days</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall/Spring Semesters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Period I</td>
<td>1-5</td>
<td>100%</td>
</tr>
<tr>
<td>Period II</td>
<td>6-10</td>
<td>80%</td>
</tr>
<tr>
<td>Period III</td>
<td>11-15</td>
<td>60%</td>
</tr>
<tr>
<td>Period IV</td>
<td>16-20</td>
<td>40%</td>
</tr>
<tr>
<td>Period V</td>
<td>21-25</td>
<td>20%</td>
</tr>
<tr>
<td>Period VI</td>
<td>26 and after</td>
<td>0%</td>
</tr>
<tr>
<td>Summer A/B terms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Period I</td>
<td>1-3</td>
<td>100%</td>
</tr>
<tr>
<td>Period II</td>
<td>4-6</td>
<td>80%</td>
</tr>
<tr>
<td>Period III</td>
<td>7-9</td>
<td>60%</td>
</tr>
<tr>
<td>Period IV</td>
<td>10-12</td>
<td>40%</td>
</tr>
<tr>
<td>Period V</td>
<td>13-15</td>
<td>20%</td>
</tr>
<tr>
<td>Period VI</td>
<td>16 and after</td>
<td>0%</td>
</tr>
</tbody>
</table>

Requests for refunds due to circumstances clearly beyond the student’s control, such as illness or required military service, must be in writing and must be accompanied by appropriate documentation, such as a physician’s statement or military orders.

A request for refund must be submitted within 60 days of the date that the student completed a change of registration. Refund petition requests will normally be processed within 10 business days. Personal appeals for denied requests must contain additional documentation not previously submitted.
Department of Education
Withdrawal/Refunds Policy

Students receiving federal financial aid who withdraw will be subject to the refund poli-
cies specified by the U.S. Department of
Education. Refunds of federal aid for stu-
dents who officially withdraw on or before
the 60% point of the enrollment period will
be determined by calculating and compar-
ing the amounts due under the federal
refund schedule and the University refund
schedule.

Housing Contracts

Students who have housing contracts must
contact the Housing Office to release their
obligation. Any refunds will be determined
at that time.

Financial Assistance

Embry-Riddle participates in a number of
federal, state, and University-administered
programs that help students and their fami-
lies meet educational costs.

Embry-Riddle believes the primary
responsibility for financing education lies
with the student and the student’s fam-
ily. Therefore, the student should apply for
financial aid early, save money, look for ways
to reduce costs, and become aware of specific
program requirements by reading all finan-
cial aid publications. Financial aid awards
are meant to supplement what the student
and family can contribute toward costs and
rarely cover all educational expenses. All
financial assistance will be limited to the stu-
dent’s individual remaining need or Embry-
Riddle’s established cost of attendance.

A complete description of financial assis-
tance programs is available online at www.
erau.edu under the Financial Aid section.

Eligibility Requirements

To be considered eligible to apply for most
financial programs, students must:
1. Be U.S. citizens or eligible noncitizens
2. Be enrolled or accepted for enrollment
 as at least a half-time student in a
degree program
3. Be making satisfactory progress toward
 a degree
4. Be registered with Selective Service if
 required to do so
5. Establish financial need
6. Not be in default on a federal loan or
 owe a repayment on a federal grant
 received at any institution

The Application Process

After applying for admission to the
University, students may complete the
federal application (FAFSA) at www.fafsa.
ed.gov. Each year, students are required
to reapply for financial aid. Students will
receive a federal PIN from the Department
of Education to renew their aid application.
All students are encouraged to complete the
FAFSA by Embry-Riddle’s priority deadline
of March 1.

Programs Available

The major categories of financial assistance
programs include grants, scholarships,
loans, and student employment. Grants and
Financial Information

Scholarships do not have to be repaid, nor does the income earned through student employment. Loans from state and federal government sources or from private lenders must be repaid. Most of these programs are based on the student’s financial need.

Grants

Federal (Undergraduate Only)
- Federal Pell Grant
- Federal Supplemental Educational Opportunity Grant

State (Undergraduate Only)
- Arizona residents are encouraged to visit the Arizona Commission for Postsecondary Education website for current Information on Arizona State Grants: www.azhighered.gov

Loans

Federal
- Federal Direct Stafford Loan (Undergraduate and Graduate)
- Federal Direct Parent Loan for Undergraduate Students (PLUS)
- Federal Perkins Loan (Undergraduate only)
- Federal Direct GRAD PLUS (Graduate only)

Private
- Other private-sector educational loans

Employment

Federal
- Federal Work-Study Program

Emby-Riddle
- Embry-Riddle Student Employment
- Off-Campus Referral Program
- Resident Advisor Program

Scholarships

Emby-Riddle
A limited number of academic scholarships are awarded to entering freshmen and college transfers who possess outstanding academic credentials. An incoming student’s completed application for admission to the University is the only application required for scholarship awarding consideration. For more information about scholarships, students should contact the campus Financial Aid Office.

Other Financial Assistance Programs

Reserve Officer Training Corps
The following campus-based organizations provide tuition scholarships to students who meet specific academic, medical, and physical requirements. In addition, Embry-Riddle offers financial assurances to new high school ROTC Scholarship winners. For more information on all requirements and benefits, refer to the Special Academic Programs and Opportunities section of the catalog.
- Air Force Reserve Officer Training Corps (ROTC)
- Army Reserve Officer Training Corps (ROTC)
- U.S. Marine Corps Platoon Leaders Class Program
Veterans Education Benefits

Embry-Riddle degree programs are approved by the appropriate State Department of Veterans Affairs (State Approving Agency) for enrollment of persons eligible to receive education benefits from the Department of Veterans Affairs (DVA).

Students must be pursuing a degree in a specific program to be eligible to receive benefits. Admission procedures for veterans and other eligible persons are the same as those for other students.

Students are responsible for notifying the certifying official of any change in their enrollment or change in personal information affecting their eligibility. Students also must remain in compliance with University and Department of Veterans Affairs requirements. Students may receive education benefits only for courses that are required for their designated degree program.

For further information concerning approved programs and the application process, eligible persons should contact the Veterans Certifying Official. Students can also visit the U.S. Department of Veterans Affairs website at www.gibill.va.gov for more information.

Extended Payments

Students who use financial assistance to pay their University charges may have the payment date extended for the amount of their award if their funds are not ready to be disbursed by the date payment is due. This is called a payment extension. Any difference between the total charges and the amount of the extension granted must be paid according to the University’s payment procedure.

To qualify for a payment extension, students must have applied for financial assistance and must have received final approval of their award.

Student Government Association Leadership Program

The Student Government Association (SGA) at each residential campus offers partial tuition waivers for elected officials of the organization. The amount of the waiver varies depending on the position held. The goal is to stimulate interest in holding elected office and to recognize the commitment student leaders make in such positions.

For information about the criteria students must meet to run in an SGA election, or for other information about the program, contact the Student Government Association office.

Athletic Grants

The University offers a limited number of Athletic Grants for qualified students. Awards are available for men’s and women’s golf, soccer, wrestling, and women’s volleyball. The maximum value permitted by the NAIA is the actual cost of tuition, room, board, books, and fees. However, most grants are awarded as partial tuition waivers. To qualify, students must meet both University and NAIA eligibility requirements. The grants are highly competitive, and interested students should contact the campus Athletic Department for specific details.

Graduate Assistantships

Graduate assistantships are academic appointments that are normally reserved for qualified graduate students. A graduate teaching assistant helps in teaching under-
graduate students in specified courses or laboratories under the general supervision of a faculty member. A graduate research assistant is involved in research activities under the direction of a faculty member or a research associate. A graduate administrative assistant assists departments or faculty with curriculum development, special projects, and other duties as assigned. To be eligible for a graduate assistantship, a student must have full graduate status in a degree program, must have maintained a CGPA of 3.00 out of a possible 4.00 or above through the end of the semester (graduate or undergraduate) preceding the appointment, and must demonstrate adequate communication and technical skills.

The graduate program department has the responsibility to post the availability of its graduate assistantships.

Students should contact departments directly about the availability of assistantships.

Full graduate assistantships carry a stipend set by the University and a tuition waiver for up to nine graduate credits per semester. Graduate assistants with such appointments are expected to devote 20 hours each week to effectively carry out their assignments. Under some circumstances, partial assistantships providing either tuition or a stipend may be granted. In such cases, expected time to be devoted is set by the assigning department. Graduate assistants are permitted to accept other University employment; however, University policies limit all students to a total of 25 hours of work per week, including the graduate assistantship. All graduate teaching, research, and administrative assistantships, both full and partial, require that the recipient be registered for at least three graduate credits at Embry-Riddle for any semester of their appointment. Summer registration is not required, but encouraged.
Department of Student Life

The Student Life Department is dedicated to serving the students of Embry-Riddle Aeronautical University by providing a safe and positive environment that enhances student learning. The Department of Student Activities, the Residence Life Program, and Residential Housing Facilities and Operations report to the Dean of Students.

Student Activities on Campus

The mission of Student Activities is to provide students with the opportunity to experience co-curricular programs that support and complement the educational process and contribute to a well-rounded education. Student Life works with other departments on the campus to offer cultural, intellectual, recreational, and entertainment events for all Embry-Riddle students.

Student Activities provides support for recognized student organizations in addition to assisting students in starting new organizations. The Prescott Campus offers a wide variety of student organizations, including: sports clubs, special interest groups, Greek Life (sororities and fraternities), honor societies, aviation clubs, military organizations, and religious clubs. Involvement in any student organization develops social responsibility, strong group dynamics, leadership, communication, management, budgeting, and decision-making skills. Students have the opportunity to learn about all of the organizations at the fall and spring Student Organizations Fairs.
Student Life and Services

The Student Activities office, located in the Student Union, is the point of contact for Student Activities, leadership development, student organizations, Greek Life, and the Student Union.

Students Under Age 18

A student under the age of 18 is required to have a signature from a parent or guardian to participate in certain campus events such as field trips, recreational activities, and sporting events. Attempting to obtain a signature for each would be burdensome for both the student and the parent or guardian, possibly causing the student to miss activities normally associated with college life.

A waiver form may be signed one time by the parent or guardian and the student giving consent for the student to sign in place of the parent or guardian for all activities and events that require written consent. Waiver forms are available in the Dean of Students Office and will be mailed to each underage student prior to their scheduled arrival. The waiver expires the day the student reaches the age of 18.

Intramural and Recreational Sports

Intramural and Recreational Sports strive to create an atmosphere of competition and fun by offering a wide variety of activities ranging from team sports such as flashball (flag football variation), volleyball, basketball, dodgeball, soccer, and softball to individual competition in such sports as table tennis, racquetball, tennis, and disk golf. Other sports are also available on request.

The director assists individual students, chartered clubs and organizations with the use of sports facilities and equipment. Students are encouraged to use all on-campus sports-related facilities (outdoor swimming pool, tennis and basketball courts, playing fields, indoor racquetball, gymnasium, and fitness center). Hours of operation vary for each facility and are posted at the respective facility.

Whether students seek a highly competitive league to demonstrate their athletic skills or select a less competitive venue that encourages group participation for fun and to stay in shape and reduce the stress in their lives, they are sure to find what they are looking for in intramural recreational sports.

In addition to on-campus recreational activities, the Prescott area offers a virtually unlimited variety of outdoor recreational opportunities. Hiking, camping, fishing, sailing, and skiing are a few of the activities available in the surrounding area.

Intercollegiate Athletics

Embry-Riddle Intercollegiate Athletics brings exciting and highly competitive varsity sports to the Prescott Campus. All Embry-Riddle students are admitted to regular-season home events free of charge, and everyone is encouraged to get involved and support the Eagles. The Prescott Campus is a member of the Association of Independent Institutions (A.I.I.) within the National Association of Intercollegiate Athletics (NAIA) and successfully competes against opponents from all divisional levels of college athletics. The collegiate men’s and women’s soccer team have qualified for post season play once again in 2010. This is the third consecutive year the women have qualified and the second year in a row the men have qualified for the A.I.I. post-season tournaments. The women’s volleyball team
Student Life and Services

finished 3rd in their post season tournament in 2010. The wrestling team continues to be a force in the collegiate rankings with 13 All-Americans in the last three years. Our student-athletes continue to excel in the classroom as well with 27 Academic All-Americans since 2007. In addition, The National Soccer Coaches Association of America recognized the ERAU-Prescott Men’s and Women’s Soccer teams for the Team Award for the Academic Year 2009-2010 outstanding team grade point averages: 3.64 Women’s Soccer team and 3.31 Men’s Soccer team.

The University sponsors six intercollegiate sport programs at the Prescott Campus: men’s wrestling, women’s and men’s soccer, women’s volleyball and beginning Fall 2011 - men’s and women’s golf. Any student who meets both University and NAIA eligibility requirements is able to compete for a position on a varsity team. Athletic grants-in-aid, in varying amounts, are generally awarded to recruited varsity student-athletes, with walk-on players earning the right to compete for scholarship assistance, when available. For tryout information, contact the Intercollegiate Athletics Department, located in building 81, adjacent to the Eagle Gym.

For more information on Eagle Intercollegiate Athletics, including game schedules, rosters, results, and statistics, log on to http://www.embryriddlesports.com.

Student Government Association (SGA)

The Student Government Association Student Council (SGA) is elected each spring semester by the student body and is responsible for providing a communication link between the students and the faculty, staff, and administration. While representing the student body and serving as the voice of the students, the SGA also provides many services and is actively involved with student activities. SGA services to the students include, but are not limited to: free beverage service, free taxi rides to students when they are in unsafe situations through the Safe Ride program, a student directory, discount cards for local businesses, legal assistance, lockers, free faxing in the Copy Center and free printing in the Student Union. SGA members are actively involved in many of the committees on campus and the president of the SGA serves as a student delegate to the Embry-Riddle Board of Trustees. For questions, comments, or concerns, contact the SGA, our office is located in the Student Union, e-mail is prsga@erau.edu or call (928) 777-3784.

First Year Programs

Dedicated to helping students achieve their academic goals, the First Year Programs team consists of highly qualified academic advisors, student assistants, peer mentors, and tutors who work together with faculty and staff campus-wide to assist students in their transition to University life.

Each college has faculty advisors and an embedded academic advisor. The embedded Academic Advisors conduct new student registration, and both the faculty advisors and embedded Academic Advisors facilitate academic planning and scheduling, assist students in overcoming academic hurdles, and help students comply with academic requirements. Additionally, all advisors serve as role models and mentors, working to build strong relationships with students, and assist students with educational, career, and life decisions.
A Career Services program manager is available in each college to facilitate students in searching for intern or co-operative education opportunities and in finding a position in industry upon graduation.

Additional services are provided to all students in order to promote success. Each of the colleges provides a first-semester class designed to transition first-time students into the University and their chosen degree program. In addition, academic assistance (tutoring) is available for all students who wish to participate. Disability support services are provided to students who qualify for services. Students may contact the Disability Support Services office for confidential consultations.

Christine and Steven F. Udvar-Hazy Library and Learning Center

The mission of the Hazy Library and Learning Center is to promote academic success and enrich the learning experience for ERAU students, faculty and staff on the Prescott, Arizona campus students.

The library opened as a campus landmark building in spring 2008. This strikingly designed, 21st century facility of 35,700 square feet incorporates emerging technologies and expanded knowledge access throughout the building for both individual use and collaborative student projects. Students use a variety of research and study accommodations including the presentation room and collaboration rooms, which are equipped with multimedia presentation equipment, group study rooms, the research instruction room, and the Worthington reading room. The Computer Commons provides 40 computer work stations with several providing specialized engineering design and math software programs. Wireless connectivity is available throughout the building. Soft seating and open tables with mountain vistas create comfortable environments in which to study. The Multimedia Technology Center provides digital imaging and presentation development software and high-end computers for student projects and assignments requiring audio and video content. Laptop computers are available at the Media Technology Center for students to checkout for use in the library.

The library’s Web site (http://library.pr.erau.edu) serves as a gateway to the library catalog, scholarly databases, and thousands of electronic journals and books. The collection is comprised of books, DVDs, technical reports, and current periodical subscriptions and newspapers. The Library also participates in local, state, and national network consortia that allow students access to unlimited information through reciprocal borrowing agreements. Professional librarians and expert staff promote academic success by assisting students in locating and evaluating a wide range of information resources. The library research instruction program provides an introduction to research methodologies and to the resources available in an academic discipline, including specialized subject databases.

The Hazy Library and Learning Center, Building 43, is open seven days a week, for a total of 102 hours throughout the Fall and Spring semesters, with extended hours during final examinations. For more information, visit http://library.pr.erau.edu or
phone 928-777-3811 for library hours, or 928-777-3761 for research assistance.

Aviation Safety and Security Archives

The Aviation Safety and Security Archives, located in RASC2 (Building 22), is a repository of research materials donated by leaders in the aviation safety industry, including accident investigation files, photographs, books, reports, and subject reference files. ASASA’s web site, http://archives.pr.erau.edu, provides information about the collections as well as access to selected items online through the Digital Library.

Information Technology Services

Information Technology strives to provide students with stable, secure, highly available, always-on systems via the Web. The Embry-Riddle Web portal, known as ERNIE (Embry-Riddle Network for Information Exchange), can be found at http://ernie.erau.edu. ERNIE accounts are provided to all students. ERNIE gives students one-stop-shopping for class and University information as well as details on campus events. ERNIE also provides a number of services that students can access, such as email, unofficial transcripts, class grades, class schedules, account balances, and flight schedules. ERNIE can be accessed from any computer with an internet connection. Information Technology also provides the following services:

- Computerized labs and classrooms
- Email accounts
- Network storage space for class assignments
- Assistance in connecting to the Residential Network (ResNet) for on-campus housing
- Wireless Internet access in many buildings and Residence Halls
- Access to a variety of academic software titles.

Student Employment

The Student Employment Office provides assistance to students seeking part-time on-campus employment and guidance to finding part-time or full-time off-campus employment in the Prescott and Quad-city areas. On-campus employment is available to all students regardless of financial need. Working on or off campus gives students an income, self-confidence, valuable employment and credit references, and a sense of accomplishment. They acquire useful skills in time management, financial planning, and professional decorum.

Students are the life blood of Embry-Riddle and student workers are a vital part of the day-to-day operations of the campus. Student workers interact closely with other students, faculty, and staff. Because students work and serve each other at Embry-Riddle, a sense of community is created. Whether undergraduate or graduate students, the campus and community is fortunate to have dedicated Embry-Riddle students as part of their work force, and Embry-Riddle students benefit greatly from being a valued part of the work force.

Embry-Riddle adheres to the principle of equal employment opportunities for all students.

The Student Employment office is located in Human Resources in Building 42, the Visitor’s Center.
Career Services

Career Services encourages students to contact them early in their education to explore career options and to develop a successful internship, full-time professional position, or graduate school search strategy.

We are dedicated to bringing together potential employers and talented professionals to meet their co-op/internship education and full-time needs. Career Services provides our students and alumni with the best job search tools and techniques available in order for them to excel in today’s highly competitive job market. This includes providing valuable expertise and resources in the areas of one-on-one career advisement; resume writing and critique services; job search and application links and techniques; interview tips and practice interviews; and The EagleHire Network, a web-based resume referral system, to view postings of regular full-time positions and internship opportunities, which also allows employers to search for candidates.

Industry/Career Expos are held in the fall, where companies visit the Prescott campus to recruit students for full-time, cooperative education, and internship opportunities and to provide information on the industry. Virtual Hiring Events are held in spring, which provide a special showcase of employers’ opportunities. On-campus company visits, interviews and informational presentations are also scheduled year-round.

Safety and Security

Safety and security at Embry-Riddle is provided by the Safety and Security Department. This unit consists of full-time officers and part-time employees. The Safety Office provides patrol and safe walk services, parking and traffic services, life-saving systems, event management, crime prevention, communications/dispatch services, and locksmith services. The Safety Department also provides 24-hour service to the University’s flight line. The department maintains a close liaison with local law enforcement agencies to provide the safest possible learning environment.

The Safety department is located in Building 14.

Veteran’s Affairs

The Coordinator for Veteran’s Affairs provides assistance for student veterans by assisting with advising, obtaining VA benefits and credit for military training, and serving as an advocate for veteran issues throughout the campus community. The Coordinator, along with veteran student employees, serves office hours in the Student Veterans Office, Building 18B. The Coordinator also serves as a liaison within the local community, coordinating support from such agencies as Veteran’s Upward Bound and the Mobile Vet Center.

The Student Veteran’s Organization (SVO) is a recognized club of registered veteran students. The SVO provides activities and programs to support the college experience of all veteran students. The SVO also operates out of the Veteran’s Office in 18B. The University provides counseling and mentoring services for our veteran students. In addition, educational programs to support veteran students in adapting to college life, tutoring to support academic excellence and social activities to build collegiality with staff, faculty, and other students are offered through the Veteran’s Coordinator and the Student Veteran’s Organization.

Specific information for veterans as
it relates to Veteran’s Administration benefits, Montgomery G.I. Bill, Yellow Ribbon Program and University financial responsibilities are available in the Financial Aid Office, in Building 41.

Wellness Center

Maintaining good health promotes a productive University experience. The Wellness Center staff is committed to promoting student wellness through direct care, education, and assistance with lifestyle modification.

Services include physician/nurse assessment, prescriptive care, chiropractic care, massage therapy, referrals, wellness education, women’s health care, medical grounding of flight students, and assistance with aerospace medical concerns. Disability Support Services, personal Counseling and Chapel services are also coordinated through the Wellness Center.

Students must satisfy the mandatory immunization requirement prior to enrollment. The Medical Report form supplied by University Admissions indicates the immunizations that students must document in order to register for courses and live in University-managed housing.

Prospective flight students should be aware that certain sensory impairments, medical, neurobiological, and psychological conditions, and prescriptive medications may delay or preclude medical certification by the FAA. These issues should be discussed with an aviation medical examiner (AME) to ensure participation in flight instruction. Students may also contact the Wellness Center clinical staff for information on eligibility for medical certification.

The Wellness Center is located in Haas Commons.

Medical Marijuana

Arizona voters recently approved the Arizona Medical Marijuana Act (Proposition 203), which, under certain circumstances, authorizes the possession and use of marijuana for medical purposes by people with debilitating medical conditions who obtain a written certification from a physician. Notwithstanding the passage of Proposition 203, because of the University’s obligations under federal law, marijuana, including medical marijuana, will continue to be banned on campus. Additionally, campus health care providers, in accordance with federal law as well as University policies and regulations, will not prescribe medical marijuana.

Under Federal legislation entitled The Drug Free Workplace Act of 1988, and The Drug Free Schools and Communities Act of 1989, “no institution of higher education shall be eligible to receive funds or any other form of financial assistance under any federal program, including participation in any federally funded or guaranteed student loan program, unless it has adopted and has implemented a program to prevent the use of illicit drugs and abuse of alcohol by students and employees.” Federal law entitled The Controlled Substances Act, prohibits the use, manufacture, distribution, dispensing, or possession of marijuana; it also classifies marijuana as a controlled substance and makes no exception for medical use. Proposition 203 does not change the fact that marijuana remains illegal under federal law; the University will therefore continue to enforce its current policies prohibiting the unlawful manufacture, distribution, dispensation, possession or use of a controlled substance, including medical marijuana, on its property or as part of any of its activities.
In summary, despite popular misconception, Proposition 203 only made possession and use of medical marijuana legal under Arizona law. It did not generally legalize marijuana possession and use. Marijuana remains a controlled substance under federal law and possession and use of marijuana remains illegal under federal law, regardless of whether a person has a prescription or is otherwise complying with Proposition 203. In order to remain eligible to receive federal grant funding and participate in federally funded student financial aid, the University must require that students, faculty, and staff do not unlawfully possess or use marijuana on campus or as part of any of its activities. As a result, the possession or use of marijuana on campus, even in accordance with the exceptions granted by Proposition 203, is a violation of federal law and the University’s current policies and regulations. Employees and students who violate these policies will continue to be subject to disciplinary action.

Health Insurance Requirement for Students

All students must have health insurance and provide proof of coverage on an annual basis and insurance coverage must be continuous throughout enrollment at Embry-Riddle. The University recommends that students and/or their parents who are currently insured contact their plan administrator to ascertain benefits and limitations while enrolled.

All students will be automatically enrolled in the University’s student health insurance plan with the premium assessed to their student account. Students with comparable private insurance may waive out of this plan and have the charge removed from their account. Prior to completing the waiver request, we encourage students and/or their parents to review the University’s basic student plan and major medical options at www.uhcsr.com. The waiver request must be received and approved by the first day of classes. Failure to waive the insurance by the semester deadline will result in the non-refundable insurance fee remaining on your student account.

Embry-Riddle is not responsible for insurance waivers that are submitted after the deadlines. The waiver can be completed by logging into the ERNIE portal and completing the Insurance Waiver on the Student Services tab.

International students with an F1 or J1 visa must demonstrate proof of coverage that meets the State Department’s requirements for international students. The Center for International Programs and Services can assist in this process.

Disability Support Services

The University is committed to ensuring access and providing reasonable accommodation for qualified students with documented disabilities. Services for Individuals with Disabilities are made available in accordance with Section 504 of the Rehabilitation Act of 1973 and the Americans with Disabilities Act of 1990.

Disability Support Services (DSS) is staffed by the DSS coordinator who works with students, faculty, and other departments to meet the accommodation needs for students with documented disabilities.

Students’ needs are addressed on an individual basis with regard to their specific disabilities, academic and career goals, learning styles, and objectives for personal
development. Campus-specific services may include assistance with planning academic schedules, registration assistance and advance registration, academic intervention programs, time management training, study skills assistance, arrangements for peer tutoring, testing modifications, advocacy, and facilitation of physical access. The University does not provide diagnostic testing but will make referrals for evaluation by area specialists. Costs associated with testing referrals are the responsibility of the individual student. Because certain academic programs are FAA-certified, those programs are subject to regulation by that agency. Therefore, regulatory limitations may delay or preclude participation or licensure in those programs by persons with certain disabilities. Prospective students with a documented disability who are considering a program of study are encouraged to contact the Disability Support Services Coordinator in the Wellness Center at least six weeks prior to arriving on campus for information on eligibility requirements and DSS services.

Contact (928) 777-6653 for DSS inquires and information.

Counseling Services
The college experience is often complex, offering students tremendous intellectual and personal opportunities, difficult challenges and demands. Many students seek counseling as a means to learn, grow, and enhance their personal and professional skills. College students are faced with many transitions such as moving away from home and ending and beginning relationships.

Individual counseling provides an opportunity for students to meet with a counselor to discuss and explore important aspects of their college experience. Counseling sessions may include adjustment to college life, relationship problems, stress, and more serious personal concerns. Counseling is available without cost to students. Content and records of sessions are confidential.

The Counseling Services office is located in the Wellness Center in Haas Commons.

Campus Ministry
The University recognizes that students may feel challenged by the many questions, experiences, and world views encountered during their college experience. We also recognize that because students are faced with a consuming social life and the subtle influence of peers, it is important to encourage and promote spiritual development. Special opportunities for deepening faith such as meetings and programs sponsored by student religious clubs and pastoral counseling are offered during the regular academic year.

The Fred and Fay Haas Memorial Interfaith Chapel is the center where students, faculty, and staff can go to for their spiritual needs - be it meditation, quiet time and reflection, or for activities offered by religious clubs and churches. It is also a place where special events are scheduled during the religious calendar.

Contact (928) 777-6653 for Chapel inquiries and information.

Residence Life Program
Located in Haas Commons, the Department of Student Life provides campus housing for students. Embry-Riddle believes that the on-campus living experience is an integral and positive part of a well-rounded University
education. Interaction with other students in the campus community living environment is a major contributor to student success. National research shows that students who live on campus earn better grades, tend to be more involved in campus activities, and are more likely to graduate than students who live off campus. The campus housing system offers programs and services that support the academic mission of the University and promote student success. All residence halls are staffed by specially trained personnel who are committed to helping students and promoting a positive community environment.

Residential Facilities

Residence halls on the Prescott Campus are furnished and air-conditioned. Housing fees include all utilities, Internet (plug-in and wireless), and cable TV access. Although computer labs are conveniently located in academic buildings, students should provide their own personal computers for use in residential housing.

All residence halls have vending facilities and easy access to laundry facilities and campus dining areas. First-year students are assigned to areas specifically for first year students.

Upper-class students can live in a variety of campus residences, including suites and apartments, on a space-available basis. Accommodations for disabled students are available. Requests for these spaces should be made to the Disability Support Services located within the Wellness Center.

Housing Application Policies

Housing brochures and contracts are sent to students who have been accepted to the University. Completed contracts must be returned to the Department of Student Life, with a $250 deposit no later than June 15 (December 15 for spring semester) for a guaranteed space in Embry-Riddle-managed housing, not necessarily a specific location or room type. Embry-Riddle guarantees all students who are required to live on campus a space. Students who are not required to reside on campus will be housed on a first come, first serve basis, space permitting. Temporary assignments may be created in order to fulfill the request for housing.

New Students

Students released from their housing contract on or after the first day of classes will be charged an $800 administrative fee. Please refer to the housing contract for terms and conditions.

Current Students

Current students released from their housing contract after April 30 will be charged an $800 administrative fee.

Housing Options

First-Year Freshman Housing

All first-year students under the age of 21 without permanent residency in Yavapai County, and with less than 28 earned credit hours, are required to live in University-managed housing for their first full academic year to include fall and spring. Any student required to reside in University-managed housing is required to have a meal plan.

Mingus Mountain Complex:

- 3-bedroom apartment with a kitchenette shared by 6 people
Upper Class and Non-Traditional Student Housing

Village Complex:
- 2-bedroom suite shared by 4 people
- 2-bedroom apartment shared by 4 people

Thumb Butte Complex:
- 1-bedroom suite shared by 2 people with a private bath

Dining Services
A variety of nutritious and satisfying dining services and meal plan options are offered. Dining facilities are conveniently located to residence halls and offer a wide range of food selections, from full hot meals to fast food and snacks. Students can also enjoy weekly specials and events such as cookouts, buffets, and celebrations. Dining service hours are designed to meet the needs of students, with meals available throughout the day. Accommodations can be made for students with special dietary needs or medical conditions. Dining service personnel are available to consult with students on an individual basis. Requests for special services should be made to the director of Dining Services.

Meal Plans
Meal plan costs are listed on the Housing Contract and may be obtained by calling the Student Life Office at (928) 777-3744.

All first-year students who are required to live on campus must purchase the seven-day all-access or five-day Soaring Eagle all-access meal plan for each of their consecutive fall and spring semesters. The seven-day plan includes $100 in Dining Dollars, while the Soaring Eagle plan includes $200. Dining Dollars can be used to purchase individual items at any campus dining location. Other plan options are available for students not required to live in University-managed housing, with information available from the Student Life Office.

Meal Plan Options for non-required students
- All You Can Eat (during the hours of cafeteria operation)
- 7-day All Access with $100 in Dining Dollars
- 5-day Soaring Eagle All Access with $200 in Dining Dollars
- 5-day All Access with $50 in Dining Dollars

Block Plans for non-required students (number of meals for the semester)
- 175 Block Plan
- 125 Block Plan
- 75 Block Plan
- 50 Block Plan

Eagle Card
The Eagle Card is the official Embry-Riddle Aeronautical University identification card and should be readily available at all times to present to University officials who may request identify verification. The Eagle Card is the property of ERAU, which reserves the right to revoke use of the Eagle Card on any of its accounts at any time. Only the individual to whom it is issued may use the Eagle Card. Other uses include:

- Activity Card: Your Eagle Card allows you access to student activities, events, games, voting, and other services provided by Embry-Riddle.
• **Access Card:** If you reside in on-campus University Housing, your Eagle Card will give you access to the residence halls. Also, certain labs and buildings require the use of an Eagle Card for entry.

• **Library:** You must present your Eagle Card each time you check out library materials.

• **Debit Card:** Your Eagle Card offers two debit accounts that are managed by the University. The Eagle Dollar account can be used at any University point of sale, including vending, copy, and laundry machines. The Flight account can only be accessed through ETA or at UHI.

• **Meal Plans:** These are accessed via your Eagle Card. (See the Dining Services section for more information on meal plans.)

Student Life and Services

Deposits
The Eagle Dollars and Flight Account minimum deposit is $1.00. Deposits to either account can be made at the Cashier Office or via the Web at https://erau.blackboard.com. The University reserves the right to suspend any account if a negative balance goes unpaid for more than 30 days, or if a student account is delinquent.

Transactions
The cardholder must present their Eagle Card at the time of purchase. All sales transactions charged to an account through the use of the Eagle Card are final at the point and time of sale. The cardholder is responsible for observing the amount charged during the transaction and monitoring balances. A cardholder can check their account balances online at https://erau.blackboard.com.

Statements
The cardholder may request a detailed statement of the Eagle Card transaction history and/or activity at the Eagle Card Office.

Account Closing and Refund
Your funds in an Eagle Card account are not transferable and there are no cash withdrawals permitted from the account(s). The funds will stay there semester-to-semester, year-to-year, and will not be refunded unless the cardholder withdraws, graduates, or is dismissed from the University, with proof required. Flight Account refunds can be requested upon flight course completion or withdrawal from the flight program. A request for a refund must be submitted to the Cashier’s Office.

Lost or Stolen Card
The cardholder is required to immediately contact the Eagle Card Center in Building 13 during normal business hours (8 a.m. to 4 p.m.), the Safety Office after business hours, or via the Web at https://erau.blackboard.com, if an Eagle Card is lost or stolen. The cardholder is responsible for all transactions charged to their accounts prior to proper notification to the Eagle Card Center, the Safety Office, or via the Web. Once the card has been reported as lost or stolen, all accounts and privileges accessed with use of the Eagle Card will be deactivated.

Replacement of Lost/Stolen or Replacement Cards
A replacement fee of $10.00 will be charged for lost cards. The fee will be waived if a card was reported as stolen and a report number was issued by Campus Safety. Temporary cards are available free of charge for up to seven days. A replacement fee of $5.00 will be charged for damaged cards if
the cardholder turns in the non-functioning card to the Eagle Card Office.

Error Resolution
If you feel there has been an error on your account, please notify the Eagle Card Office within 60 days from the date of the transaction in question. In order to resolve the problem we will require the following:

- Name, student ID number, and Social Security number
- Description of the error or transaction in question
- Dollar amount of the transaction in question
- A clear explanation of why you believe there is an error.

Disclosure of Accounting Information to Third Parties
The University will disclose information to third parties about the account holder’s account(s) or the transfer made only: (1) in order to comply with court orders or other applicable laws, or (2) if the account holder gives written or verbal permission, or (3) if the student’s account receivables is in the third party’s name. All policies and procedures are subject to change.

Mail
All new and continuing, registered students are assigned a campus mailbox and are required to check it daily. All personal mail, UPS, Federal Express, deliveries, etc., should be addressed as follows:

If box number is known:
Student Name
Embry-Riddle Box #________
3700 Willow Creek Road
Prescott, AZ 86301-3720

If box number is unknown:
Student Name
Embry-Riddle - New Student
3700 Willow Creek Road
Prescott, AZ 86301-3720

Center for International Programs and Services (CIPS)
The Center for International Programs and Services (CIPS) at Prescott, houses International Admissions, Study Abroad and the International Student Services. CIPS is the central point of contact for issues concerning international education at Embry-Riddle such as information regarding study abroad and exchange programs, as well as cultural programming. An international student orientation is held each semester to familiarize students with University and immigration policies as well as the education system in the United States. The office advises students on admission to the University and immigration regulations, in addition to financial and personal matters. CIPS also assists international students with the processing of forms and documentation of status required by foreign governments, sponsors, the U.S. government and the University.

CIPS staff members continually strive to provide opportunities for international students to become involved on campus and in community programs that promote cross-cultural awareness with University faculty, staff, and students as well as the local com-
Community. Some activities include International Education Week, programs with local families to introduce students to the community, local speaking engagements, and trips to area attractions such as amusement parks, national parks, and cultural festivals.

To learn more about CIPS, contact (800) 888-6600 or (928) 777-3774 or visit our office in Building 51.

Dean of Students Office

The Dean of Students Office offers services to assist students with difficulties they may encounter, including personal and family emergencies. The department oversees all non-academic student conduct and judicial issues as well as disciplinary records. Reporting to the Dean of Students are the Department of Student Life, International Student Services, the Wellness Center (Health, Counseling, Campus Ministry, and Student Services Department) and Veteran’s Services.

The Dean of Students Office is located in building 18A.

Student Grievance Procedure

It is the policy of Embry-Riddle Aeronautical University to administer its educational programs in a fair, equitable, academically sound manner and in accordance with the appropriate regulations and criteria of its governing board, accrediting associations, and federal and state laws and regulations. Students are provided an opportunity to express any complaint, grievance or dispute to be investigated for possible resolution.

The Dean of Students office will provide advice and guidance to students who present grievances or complaints, whether personal or academically related. Appeals concerning previously assigned grades are specifically addressed through the academic administrative chain, beginning with the course instructor (See Grade Appeal Process in Catalogue and Student Handbook). The Dean of Students office will provide general guidance on the Grade Appeal process and other academically related issues.

Students are first encouraged to address their grievance, whether personal or academic, directly with the appropriate faculty/staff member with responsibility concerning the issue. This is considered an “Informal” process and is meant to empower the student to confront the source of their concern, as well as minimize the length of time involved in achieving a resolution. If no agreement is reached, students may choose to put their grievance in writing directly to the next appropriate department head or director with responsibility for the area of concern. Students may seek assistance from the Dean of Students office to file and process a formal written grievance. Any student, at any time may choose to file a formal written grievance with the Dean of Students office.

Formal Process:

1. The Dean of Students or his/her designee will meet with the student to discuss options.

2. Students who wish to file a written grievance or complaint will be requested to submit a report via electronic means, if possible. Students are encouraged to include details, specific information, and a complete description of the issue of contention.

3. The written complaint will be electronically filed in the Student Conduct Data Management System for
record keeping purposes. A copy of the report will be forwarded with High Importance notation to the Department Chair, Director or College Dean as appropriate, along with a request for review and follow up.

4. Students will be encouraged to follow up with the Dean of Students office regarding the status of their grievance and/or to seek guidance regarding any phase of the process.

5. The Dean of Students office will keep a record of all correspondence regarding student grievance cases, up to and including resolution, for a minimum of three (3) years following final disposition.

In the event that a student wishes to file a grievance or complaint against another student, the ERAU Student Conduct Board and applicable judicial procedures may be applied (See Student Conduct Board Process – Student Handbook).

When it is appropriate, the Dean of Students office offers formal mediation services for dispute resolution. Mediation may take place in lieu of Student Conduct Board proceedings, but requires commitment on the part of both parties that the process and the outcome are formal and that both parties will accept the final decision.

Student Rights/Disciplinary Appeals

The Student Affairs Student Conduct Board may be convened to consider cases of alleged misconduct in which a student appeals the charges of misconduct brought against him/her. These are cases in which a student wants to request a review of Sanction Levels IV - VII imposed by a department or University personnel, or cases in which a student feels persons or agencies at the University have violated his/her rights. The Student Affairs Student Conduct Board is composed of a student chief justice, two student justices, and two staff/faculty justices. Students may elect to adjudicate an appeal through a University Administrator rather than the Student Affairs Student Conduct Board. The supervisor of the University Student Conduct officer that made the original decision may serve as the appeal administrator. Applications for hearing or appeal are available through the Dean of Students Office.

If the student complaint cannot be resolved after exhausting the institution’s grievance procedure, the student may file a complaint with the Arizona State Board for Private Postsecondary Education. The student must contact the State Board for further details.

Arizona State Board for Private Postsecondary Education
1400 W. Washington, Room 260
Phoenix, AZ 85007
Phone: (602) 542-5709
Website: http://azppse.state.az.us
English Language Program - ELS Language Centers

In order to help students fulfill the English proficiency requirement, Embry-Riddle in Prescott works as a cooperating school with ELS Language Centers, one of the premier providers of English language learning in the United States. If you meet all other admission criteria beside the TOEFL requirement, ERAU-Prescott can conditionally admit you while you study English with ELS Language Centers. Upon completion of Level 112 with ELS Language Centers, you can be fully admitted to begin your studies at ERAU–Prescott.

Please visit the ELS Language Centers website at www.els.edu for more information. For direct information about ERAU-Prescott’s cooperating University arrangement with ELS Language Centers, and for a listing of the ELS Language Centers location nearest to our campus, please visit: http://www.collegedirectory.els.edu. For more information, contact International Admissions at the Prescott Campus at (928) 777-6600.

Embry-Riddle Honors Program

The Honors Program at Embry-Riddle is highly selective, offering students an enriched educational experience while also giving them opportunities to enhance campus and community life for others. Honors Program students enroll in several general education seminars focused on relevant, stimulating, interdisciplinary topics that encourage critical and creative thinking. Honors classes are small, the faculty is carefully selected, and the courses are student-centered and discussion-oriented. The Honors experience in the major emphasizes close involvement with selected faculty, research opportunities, and individually tailored projects. The program also adds to campus life through its guest speaker series and through activities sponsored by its student organization. Graduates of the Honors Program are models of academic excellence and student leadership.

Some features of the Honors Program:

- Nine credit hours of Honors in general education; at least nine credit hours of Honors in the major. The Honors Program does not add credit hours to any major
- Honors faculty
- Guest speakers who spend time with students in Honors seminars
- Honors housing for freshman students
- Priority registration for classes
- Research opportunities
- Co-op and internship opportunities
- Summer study-abroad opportunities

Ronald E. McNair Scholars Program

Named in honor of the African-American mission specialist who died in the 1986 Challenger disaster, and funded by a U.S. Department of Education TRiO grant, this prestigious diversity program offers financial aid and academic and other support services to eligible upper-division students who are interested in pursuing graduate studies leading to a Ph.D. after leaving Embry-Riddle. To be eligible, a student must
represent a low-income, first generation, or underrepresented group such as certain ethnic minorities. In addition to some financial aid, the program provides academic mentoring, academic and career counseling, Graduate Record Examination (GRE) preparation, a 3 credit upper division course in research methodology and statistics, funded research opportunities, and cultural/social activities. Acceptance in the program is based on a special application process and is selective. Eligible transfer students are welcome to apply. For more information, students should contact the McNair Scholars Program office on campus.

International Programs

Embry-Riddle offers its students a wealth of opportunities to study abroad in more than 50 destinations spanning five continents worldwide. Summer Study Abroad programs, consisting of 6 credit hours taught over a five-week summer session, offer students the chance to learn language skills and the culture and history of the country they are studying in through Embry-Riddle classes taught at cooperating institutions overseas. A variety of semester-long and year-long exchange programs are also available, including the opportunity to complete a dual degree (bachelor’s and master’s) with a European university.

Motivated students in good academic standing (participation requires a minimum GPA of 2.5 for summer programs and 3.0 for exchange programs except under special circumstances) from the Prescott, Daytona Beach, and Worldwide campuses have the unique opportunity to take courses through our partner schools that will be directly applicable to their degree programs at Embry-Riddle while traveling and participating in numerous cultural activities abroad. Foreign language classes are an essential part of every program, and students at all levels of language ability – from beginners to native speakers – are encouraged to take part. In fact, all Embry-Riddle summer Study Abroad programs are designed to accommodate students who have no prior foreign language experience. Embry-Riddle is affiliated with many universities offering specialized semester-long and year-long programs that are taught in English or other languages; appropriate language fluency will be required in non-English speaking programs. Qualified exchange program participants could also have the opportunity to be placed in paid internships with companies or research labs abroad. Students who qualify for financial aid are eligible to receive funding when enrolled in one of our international programs; there may also be additional scholarship and grant opportunities available to students who choose to study abroad.

Cooperative Education

Cooperative Education/Internship offers qualified students an opportunity to gain valuable experience, explore career options, develop contacts in the industry, and earn college credit. Requirements and benefits vary by degree program and by employer. Students should discuss their co-op/internship plans with their Career Services Director, and, when applicable, with the co-op/internship faculty advisor in their degree program. For undergraduates, one (1) upper-level open elective credit hour is
Special Opportunities

awarded for every 100 clock hours of work completed, up to a maximum of six (6) credits in one semester. For graduate students, one (1) credit hour is awarded for each 200 clock hours of work completed, up to a maximum of three (3) credit hours for the semester. Additional information is available from Career Services and on the Career Services website (http://prescott.erau.edu/csm/pud-services/career/index.html). A co-op/internship fee, based on the cost of one (1) credit hour in a student’s degree program, is charged each semester.

Reserve Officer Training Corps

Reserve Officer Training Corps programs are subject to the control of the service branch that sponsors them and are operated according to the rules and regulations established by the service branch. These may be changed from time to time without notice or obligation.

Not all Reserve Officer Training Corps programs are available at all University campuses or locations. Students should contact the Admissions Office to determine program availability.

Air Force Reserve Officer Training Corps

The Air Force Reserve Officer Training Corps (Air Force ROTC) is a leadership and educational program designed to give men and women the opportunity to become Air Force officers while completing their college degrees. The Air Force ROTC program is focused on preparing cadets to become leaders in today’s high-tech Air Force.

Air Force ROTC enrollment is not restricted to individuals who wish to commission as officers in the USAF. Students may elect to take Air Force ROTC courses for academic credit only, earning elective credits for all University degrees. Additionally, Prescott Campus students who complete all 16 hours of Air Force ROTC coursework are eligible for a Defense Studies minor. For more information, refer to the Minor Courses section of the catalog.

Any qualified student may enroll in Air Force ROTC classes. Check with your local Air Force ROTC detachment for more information.

Four-Year Program

The first half of the four-year program is called the General Military Course, which is offered during a student’s freshman and sophomore years. This program allows students to try out Air Force ROTC for up to two years without incurring any obligation (unless they are on an Air Force ROTC scholarship). As students attend class, they learn more about the Air Force and the historical development of airpower. The last two years are called the Professional Officer Course. These junior and senior level classes cover leadership skills, national security affairs, and preparation for active duty.

Three-Year Program

While Air Force ROTC is designed to be completed over four school years, it is possible for in-coming sophomores to enter the program with the intention of completing it in three. Under this program, a student will take both the freshman and sophomores classes in the first year and then continue with the junior and senior years on the same track as his or her 4-year counterparts. Not until the start of the junior year does a
student incur an obligation to join the Air Force, unless the student accepts an Air Force scholarship sooner. Candidates for the three-year program must be approved in advance by the detachment commander.

Finances
Textbooks for all Air Force ROTC courses are free. Students who have contracted with Air Force ROTC receive a tax-free subsistence allowance during the academic year of $300-$500 per month, depending on their academic year.

Air Force ROTC Scholarships
Air Force ROTC offers scholarships for qualified students on a competitive basis, covering a student’s college education for two, three, or four years. Each scholarship pays up to full tuition, laboratory fees, incidental fees, an annual book allowance of $900, and a tax-free subsistence allowance of $300-$500 per month (see Financial Information). High school students interested in a scholarship should apply as soon as possible in the six-month application period (mid-May to December 1 of their senior year). Application forms for the scholarship are available online at http://www.afrotc.com.

In-college scholarship opportunities are also available for students already enrolled in the Air Force ROTC program. Freshmen can earn three-year scholarships, while sophomores can earn two-year scholarships. College transferees may also be eligible for these scholarships.

All scholarship applicants must meet the following minimum requirements:
- Be a U.S. citizen
- Must commission prior to age 30 (up to 35 with waiver)
- Meet military and physical standards
- Pass the Air Force Officer Qualifying Test
- Have a minimum cumulative GPA of 2.50

For more information, contact:

Air Force ROTC Detachment 028
Embry-Riddle Aeronautical University
3700 Willow Creek Road
Prescott, AZ 86301-3720
(928) 777-3868
1-800-888-3728 x3868
http://www.erau.edu/pr/rotc/afrotc

In addition to the Air Force’s scholarship aid, Embry-Riddle also offers financial assurances to new high school Air Force ROTC scholarship winners. Scholarship winners should contact the Financial Aid Office for more information regarding financial incentives funded by the University. University funding includes any University scholarships, need-based grants, and awards. University funding, in combination with funding from Air Force ROTC, cannot exceed the cost of education. This University assurance is offered at the discretion of the University financial aid department, not Air Force ROTC.

Army Reserve Officer Training Corps
Army Reserve Officer Training Corps (ROTC) is open to both men and women, freshmen through seniors, and may lead to a commission as an officer in the U.S. Army. Army ROTC enhances a student’s education by providing unique leadership and management training, along with practical experiences. The curriculum is designed
to be challenging, educational, and flexible enough to allow students to meet scholastic and personal goals. Classes and training include leadership development, leadership problem-solving, tactics, physical training, map reading, land navigation, rappelling, rifle marksmanship, patrolling, drill and ceremony, military history, ethics, and military law. Students can earn 18 hours of academic credit for completing four years of Army ROTC. Those who do so may be eligible for a Defense Studies minor. The ROTC courses may also be applied toward open elective requirements in degree programs. All uniforms, military textbooks, and equipment are issued to contract-eligible Basic Military Science freshman/sophomore cadets at no charge.

Army Reserve Officer Training

The Army Reserve Officer Training Corps program gives students an opportunity to acquire the skills and knowledge necessary for commissioning as a second lieutenant in the U.S. Army. The program offers a two, three, and four-year option. The two-year option allows students with at least two academic years remaining in college to meet all requirements for commissioning by attending basic camp or using past military experience for credit.

Basic Military Science

The Basic Military Science courses are offered during the freshman and sophomore years. These courses cover military organization, equipment, weapons, map reading, land navigation, use of compass, rank structure, threat, communications, leadership, and physical training. Each course consists of classroom instruction and a mandatory lab. Students are required to have a doctor’s statement allowing participation in college-level physical education classes. Freshman and sophomore students may enroll in Basic Military Science classes with no obligation to the Army.

Advanced Military Science

The Advanced Military Science courses are normally taken during the junior and senior years. These courses specialize in small unit tactics, preparation and conduct of military training, military justice system, staff procedures, decision making and leadership, managerial concepts, problem analysis, military writing, the ethics of the professional soldier, and physical training. The courses consist of classroom instruction and a mandatory lab. This phase requires attendance at a five-week National Leadership Development Assessment Course (LDAC) held at Ft. Lewis, Wash., during the summer after the junior year.

Leaders Training Course

A summer training program is offered for students without previous ROTC or military training who will be academic juniors. A five-week course at Fort Knox, Ky., during the summer after the sophomore year qualifies a student for entry into the Advanced Course, thus allowing completion of all requirements for commissioning in two years. Students attending the summer camp at Fort Knox receive approximately $800. Students receive six hours of credit for the basic military science course upon completion of the Leadership Training Course.

Benefits

All contracted military science students receive a monthly stipend of $300-$500 per month.
Special Opportunities

Four-year, three-year, and two-year scholarships are available to those who qualify. The higher the student’s GPA, physical fitness and SAT/ACT scores, the better their chance of being selected as a scholarship recipient.

In addition, entering freshmen who receive three-year advance designee and four-year Army ROTC scholarships are eligible to receive additional financial incentives from Embry-Riddle. Army Green to Gold Scholarship winners may be eligible for these incentives as well.

All applicants must meet the following requirements:
• Be a U.S. citizen
• Be under 31 years of age prior to commissioning
• Meet required medical and physical standards
• Have a minimum cumulative academic GPA of 2.50
• Have a minimum SAT score of 920 or an ACT composite score of 19

Scholarship benefits include:
• Full tuition per year
• A subsistence allowance of $300-$500 per month
• A $600 book allowance per semester
• Additional financial incentives sponsored by the University may be available to Tuition Scholarship winners. Contact the Financial Aid Office for more information about other opportunities.

Admission to the Basic Course
Admission requirements are:
• Enrollment in a baccalaureate or master’s degree program
• Must be at least 17 years of age at time of entry
• U.S. citizen
• Must maintain full-time student status each term

Admission to the Advanced Course
Admission requirements are:
• Successful completion of the Basic Course Leader’s Training Camp or its equivalent
• Successful completion of the Army physical examination
• Selection by the professor of Military Science
• Agreement to complete the Advanced Course requirements and serve on active duty, reserve, or National Guard duty as a commissioned officer
• Maintain a 2.00 overall academic GPA and a 3.00 ROTC GPA
• Must maintain full-time student status each term

Army Green to Gold
If you are currently on active duty and will have two years of active duty before school starts and are accepted by Embry-Riddle as either a freshman, sophomore, or junior, you can compete for a Green to Gold four, three, or two-year scholarship.

You must have a GT score of 110 or higher and a cumulative grade point aver-
Special Opportunities

age of 2.50 on a 4.00 grading system to be eligible for the three or two-year scholarship. A GT score is not required for individuals applying for a four-year scholarship. Four-year applicants must have a cumulative grade point average of 2.00 on a 4.00 grading scale. All applicants must meet other eligibility requirements. An SAT score totaling 920 or an ACT composite score of 19 is required for three and four-year Green to Gold scholarships.

For further information contact:
Embry-Riddle Army ROTC
Bldg. 17
3700 Willow Creek Road
Prescott, AZ 86301-3720
(928) 777-3870
fax: (928) 777-3772
http://prescott.erau.edu/army-rotc

Physical Training
All contracted cadets are required to attend physical training three days per week as part of the course grade. Physical training is normally conducted on Monday, Wednesday, and Friday from 6-7 a.m.

Marine Corps Programs
For freshmen, sophomores, and juniors, the Marine Corps offers the Platoon Leaders Course (PLC). Freshmen and sophomores attend two six week summer training sessions over two years and juniors attend one ten week training session. Both the six week and the ten week sessions are located at Quantico, Va. During the training sessions, candidates can earn from $2,885 to $4,810, depending on which training session is attended. In addition, eligible candidates may apply for two financial assistance programs, the Marine Corps Financial Assistance Program (MCFAP) and the Marine Corps College Tuition Assistance Program (MCTAP). Call or visit the Web site (http://officer.marines.com/) to receive more information.

To be eligible for the program, the student must be a U.S. citizen (either native-born or naturalized), between the ages of 18-28 (exceptions are considered), full-time enrollment in a minimum of 12 academic credits per semester, minimum GPA of 2.0, and must be working toward an accredited/recognized baccalaureate degree.

The PLC Program offers two entry-level paths that lead to commissioning as a second lieutenant in the U.S. Marine Corps. The first is the Guaranteed Aviation Program. Applicants must have a qualifying ACT, SAT, or ASVAB score and must take the Aviation Selection Test Battery (ASTB). Those who have at least the minimum score of 4/6 on the ASTB; pass an aviation medical examination (performed at a Navy medical facility); pass a Marine Corps Physical Fitness Test (PFT); and are accepted into the program by Headquarters Marine Corps, will be eligible to receive a contract guarantee. The second program is the Ground Officer Program. This program encompasses over 20 military occupational specialties not directly related to piloting aircraft.

Openings are available for men and women with any major. Contact the Officer Selection Officer at (480) 894-0439 OR (602) 432-1204 (CELL).
Embry-Riddle offers students opportunities to pursue academic programs in a wide variety of aviation and aerospace fields. Each degree program includes general education and academic specialization, the two components complementing each other. Detailed information about specific degree programs are listed first by College and then Minor courses of study in the following section.

The University currently offers the following undergraduate degree programs at the Prescott Campus.

College of Arts and Sciences
- B.S. in Aviation Business Administration
- B.S. in Aviation Environmental Science
- B.S. in Global Security and Intelligence Studies
- B.S. in Interdisciplinary Studies
- B.S. in Space Physics
- Still Exploring

College of Aviation
- B.S. in Aeronautical Science
- B.S. in Aeronautics
- B.S. in Air Traffic Management
- B.S. in Applied Meteorology
- Still Exploring

College of Engineering
- B.S. in Aerospace Engineering
- B.S. in Computer Engineering
- B.S. in Electrical Engineering
- B.S. in Mechanical Engineering
- Still Exploring

Basic Skills Requirement
Embry-Riddle recognizes the importance of communication and quantitative skills in all areas of aerospace. Successful pilots, engineers, airport managers, aviation maintenance technicians, and other aviation professionals must possess these skills to perform their jobs effectively. Embry-Riddle, therefore, requires all students, including transfer students, to demonstrate proficiency in writing, reading, and mathematics before they are permitted to complete registration during their first term at the University. Proficiency may be demonstrated by earning qualifying scores on SAT/ACT tests or by transferring credit for college-level English and mathematics courses.

If they cannot demonstrate proficiency in these basic skills, students must enroll in COM 020, Fundamentals of Communication, a reading, writing, and critical thinking skills course. Quantitative skills courses (MA 006, MA 106) help students prepare for mathematics courses required in the various degree programs.

Students whose primary language is not English are required to demonstrate advanced English proficiency by achieving a satisfactory score on a placement test. Students unable to demonstrate such proficiency must enroll in appropriate basic skills courses in their first term at the University.

General Education Introduction
Recognizing its general and special missions in education, Embry-Riddle embraces a general education program. This course of study ensures that students possess the attributes expected of all University graduates. Encouraging intellectual self-reliance and abil-
ity, the general education program enables students, regardless of their degree program, to understand the significance of acquiring a broad range of knowledge.

Throughout the general education program, students gain and enhance competence in written and oral communication. They practice reasoning and critical thinking skills and demonstrate computer proficiency. As students engage in this course of study, they familiarize themselves with and investigate ideas and methodologies from several disciplines. These include the arts and humanities, the social sciences, the natural sciences, and mathematics. The program also helps students recognize interrelationships among the disciplines.

Promoting the appreciation of varied perspectives, the general education program provides intellectual stimulation, ensuring that students are broadly educated. This course of study empowers students to make informed value judgments, to expand their knowledge and understanding of themselves, and to lead meaningful, responsible, and satisfying lives as individuals, professionals, and concerned members of their society and the world.

General Education Requirements

Embry-Riddle’s general education program encourages effective learning and provides a coherent base for students to pursue their academic specializations. In specific support of the goals of general education, candidates for bachelor degrees must complete coursework or demonstrate competency in the following areas. The faculty certify all coursework accepted for general education credit as advancing general education objectives. They additionally establish methods for students to demonstrate competency in these areas of study. Because certain degree programs require particular courses in the general education program, refer to the degree requirements section of the catalog before selecting general education courses.

Communication Theory and Skills
9 hours
In order to lead meaningful and responsible lives in complex societies, students produce, evaluate, articulate, and interpret information and meanings in oral and written communications.

Mathematics
6 hours
In order to develop quantitative reasoning skills and to use and understand the language of science and technology, students must demonstrate mathematical proficiency. Three hours may be satisfied by placement, examination, or course completion. The other three hours must be completed by taking a course that has college algebra as a prerequisite.

Computer Science/Information Technology
3 hours
In order to use computers and to understand and evaluate their significance in the solution of problems, students study the concepts, techniques, and tools of computing.

Physical and Life Sciences
6 hours
In order to appreciate current understanding of the natural world, students study the concepts and methods of the physical and life sciences, applying the techniques of scientific inquiry to problem-solving.

Academic Programs

Humanities
3-6 hours lower-level
*3 hours 300-400 level
In order to participate in the complexity of human experiences that arise in a framework of historical and social contexts, students are exposed to the humanities. Areas of study may include cultural, aesthetic, philosophical, and spiritual dimensions of the human condition.

Social Sciences and Economics
3-6 hours lower-level
*3 hours 300-400 level
In order to understand interrelationships between the individual and society and connections between historical memory and the future, students examine the social sciences, including history, government, economics, psychology, or sociology.

* In order to experience advanced studies in either the Humanities or Social Sciences, students must choose at least one upper-level elective in the Humanities or Social Sciences.

University General Education Competencies
While taking General Education required courses, students develop a basic set of General Education skills (i.e., competencies, listed below) based on course learning outcomes. This skills set will be instrumental to student success in upper level courses within their degree program; in these courses students will practice application of this skill set, eventually demonstrating mastery before graduation. As a result, students will graduate with a set of General Education competencies that will provide the basis for success in life and on the job. The following skills are the competencies that all University students will develop, practice, and master in preparation for graduate school or the workplace.

Critical Thinking
The student will apply knowledge at the synthesis level to define and solve problems within professional and personal environments.

Quantitative Reasoning
The student will demonstrate the use of digitally-enabled technology (including concepts, techniques and tools of computing), mathematics proficiency & analysis techniques to interpret data for the purpose of drawing valid conclusions and solving associated problems.

Information Literacy
The student will conduct meaningful research, including gathering information from primary and secondary sources and incorporating and documenting source material in his or her writing.

Communication
The student will communicate concepts in written, digital and oral forms to present technical and non-technical information.

Scientific Literacy
The student will be able to analyze scientific evidence as it relates to the physical world and its interrelationship with human values and interests.

Cultural Literacy
The student will be able to analyze historical events, cultural artifacts, and philosophical concepts.
Still Exploring Engineering Freshman

Students exploring engineering who have not selected a specific degree program may, during their freshman year, enroll in the courses listed in the common engineering first-year catalog description. This enables an engineering student interested in engineering to explore the content of all the engineering programs over their freshman year prior to declaring a major at the beginning of their sophomore year. The courses apply toward any engineering degree. Still Exploring students should follow the common freshman engineering program, then select a degree program upon completion. After a degree program is chosen, an advisor will be assigned to the student to discuss courses to take and future career goals. Pre-college preparation in math and physics is essential for success in engineering. If it is necessary to enroll in more basic math and physics courses to ensure that preparation, students should understand it may take them longer to complete the degree they choose.

The First-Year Engineering Program

The Freshman Engineering Program is a joint responsibility between the College of Engineering and all departments in the College. The purpose of this coordination is to ensure success of all engineering programs at the freshman level. In industry, engineers in a certain discipline have to work with engineers in other disciplines, so it is in the best interest of our engineering students that they interact with students in other engineering programs. This is accomplished via team projects and several common engineering courses.

The First-Year Program ensures that instructors involved in the program have the appropriate quality and experience to teach the freshman courses. The program maintains consistency in the continuous processes of outcomes assessment throughout all the College of Engineering curricula as required by the program’s accrediting agencies.

The College of Engineering First-Year Advising Program focuses on advising and retaining all engineering freshmen.

Graduate Programs

The University currently offers the following graduate degree programs at the Prescott Campus.

College of Aviation

M.S. in Safety Science
Ph.D. in Aviation

Master of Science in Safety Science

The Master of Science in Safety Science (MSSS) degree program is designed to provide students with a practical course of study in occupational health and safety. The degree will produce safety professionals who are skilled in providing safety management expertise in a variety of industries. Graduates will be able to provide leadership and guidance in compliance issues involving EPA, OSHA, DOD, FAA, DOE, NTSB and state health, hygiene, and workplace standards, and will be prepared for service in numerous industries, including but not limited
to the aviation/aerospace industry and the military. For detailed information about the MSSS degree program, including Graduate Assistantships, Graduate Internships, and Guidelines for Graduate Research Projects and Thesis, see the complete program listing in the College of Aviation section of this catalog.

Doctor of Philosophy (Ph.D.) in Aviation

The demand for aviation professionals with the skills to conduct research and solve problems continues to grow in response to the increasing complexity and evolution of the aviation field. The Ph.D. in Aviation program is designed to address that need by allowing students to pursue doctoral studies in aviation in a diverse, intellectually versatile and multi-disciplinary environment. It is the first Ph.D. in aviation in the U.S.

Courses are offered online for greater accessibility to the working professional. Participation in three six-day on-campus residency seminars is required during the program. This program format provides doctoral degree students an innovative way to achieve their personal, educational, and professional goals.

The Ph.D. in Aviation program is designed to enable students to achieve the following learning objectives: develop mastery of the central theories and concepts in the field of aviation, including foundations, safety management, economics, and regulatory procedures; pose and solve theory-based and research-based problems designed to advance applications in the field of aviation; extend the aviation body of knowledge by conceiving, planning, producing, and communicating original research; develop and demonstrate expertise in instructional processes; and demonstrate leadership, collaboration, and communication necessary for scholarly work in aviation.

Courses are offered during three 15-week terms per year. The program requires completion of four aviation core courses, a four-course sequence in statistics and research methodology, and four specialization or cognate courses. A qualifying exam tests student’s mastery of core and cognate subject matter and is conducted at the end of the course work.

Completion and defense of a dissertation is the final phase of the program. The dissertation is a formal academic paper that constitutes the culmination of the doctoral program.

The purpose of the dissertation is to prepare students to be professionals in a discipline, to develop the skills necessary to engage in independent research, and to advance the body of knowledge in aviation. The program requires completion of 90 credit hours of course work, residency seminars, and dissertation courses, including 30 credit hours from the student’s master’s degree.

Specific information about the program, including admission and course requirements, can be found in the Embry-Riddle Aeronautical University Doctoral Programs Catalog, and at the program website: http://aviationphd.erau.edu.
Welcome. Our programs and curricula encompass the humanities, communication, strategic languages, the physical and life sciences, the social and psychological sciences, mathematics, economics, business, management, security and intelligence studies, and military science. In essence, our wide variety of offerings signifies that our College puts the universe in university. Through our academics we offer mental, physical, and spiritual enrichment so that our students can succeed in all areas of life from the professional to the personal. We are totally committed to helping our students develop as scholars, professionals, and citizens.

Cherished pursuits of the College are developing leaders; inculcating moral and ethical integrity; helping to resolve local, regional, national, international, and global issues; and supporting both the uniqueness of the individual and the integration of the individual into the larger community.

General Education. The College offers courses in mathematics, the physical and life sciences, the social and psychological sciences, information technology, humanities, communication, economics, business, management, and security and intelligence studies. These courses provide essential knowledge supporting all University degree programs. They also provide an intellectual and emotional grounding necessary for 21st century success on the student’s terms. Finally, they shape the priceless competencies of speech, writing, close reading, quantitative analysis, qualitative analysis, aesthetic apperception, critical thinking, moral and ethical judgment and behavior, and leadership. Our General Education courses provide our students a strong foundation for success, not only in their degree programs but in their careers after graduation.

Degree Programs. The College offers five degree programs: Aviation Business Administration, Aviation Environmental Science, Global Security and Intelligence Studies, Interdisciplinary Studies and Space Physics. The Global Security and Intelligence Studies (GSIS) Program now offers a second track: GSIS/Chinese.

U.S. Army and U.S. Air Force ROTC. ROTC activities are administratively situated in the College to ensure the highest quality educational experience for all ROTC cadets. Please refer to the Special Academic Programs and Opportunities section of the catalog for more information.

Federal TRIO Programs. The Upward Bound program provides educational services and programs for college-bound students from disadvantaged backgrounds as described in the Higher Education Act of 1965, Title IV, Part A, Subpart 2. The prestigious Ronald E. McNair Scholars Program offers financial aid, academic, and other professional support to eligible underserved (low income/first generation) or under-represented (minorities and women in certain degree programs), upper-division students who desire to pursue graduate studies after graduation from Embry-Riddle. Please refer to the...
Financial Assistance section of the catalog for more information.

National Aeronautics and Space Administration (NASA) Education Resource Center. Our math and science faculty are engaged in developing and implementing novel education and training opportunities for students and teachers from kindergarten through high school. This engagement is possible through the support of and in coordination with NASA and is unique with its innovative outcome assessment techniques founding program quality.

International Education. All students have the option of receiving a portion of their undergraduate education at selected universities in Europe, Asia, Latin America, Africa, and the Middle East. Other international education experiences include co-ops and internships. The College matches the needs of each student with prospective academic institutions and venues.

Professional Consultation. Faculty work on grants, contracts, and consultancies with federal, state, and local governments. These faculty members also set world standards in partnership with corporations and other business and industrial entities. Finally, they shape public opinion through extensive mass media communication. Of special note are the College’s Global Security and Intelligence Studies (GSIS) faculty, who continue to break new ground in aviation security, homeland security and defense, antiterrorist and counterterrorist policy, and international risk and threat assessment with its faculty-student intelligence product, The Eagle Eye, and new Eagle Operations Center. As well, the Aviation Business Administration (ABA) program is renowned for its faculty-led student teams providing ad hoc consulting for airports and other transportation sites and for its consulting with the Transportation Research Board and the Arizona Aerospace and Defense Commission.

Scholarly Accomplishment. All faculty are engaged in creating knowledge that benefits not only their scholarly discipline but also the world at large. Knowledge may be basic or applied and covers all the arts and sciences. Students often work closely with faculty on grants, contracts, and other scholarship pursuits. Of special note are our Space Physics faculty and students who epitomize learning through scholarship and research, For example, one area of specialization involving the laser interferometer gravitational wave observatory. Another source of excellence is the FAA-sponsored research undertaken by our Aviation Environmental Science faculty into critical areas of inquiry such as bird-strike investigations, while our ABA faculty have literally “written the book” on airport management and aviation labor relations. Yet another growing area of excellence is in the empirical validation of novel service learning activities.

Conclusion. At the Prescott Campus, the College of Arts and Sciences works closely with the Colleges of Aviation and Engineering. The result is a seamless and unsurpassed educational experience that places the student on the road to professional, social, and personal success.
The Aviation Business Administration degree program, offered by the Department of Business, reflects the ever-changing and demanding environment of business, government, and the aviation industry. The curriculum is designed to provide graduates with the knowledge and skills essential to their successful entry into business and society. Emphasis is placed on effective communications, quantitative skills, global awareness, social responsibility, information technology, critical thinking skills, teamwork, business functional skills, aviation/aerospace industry familiarity, and a commitment to lifelong learning.

This degree program offers a unique educational experience for the business-focused student. It is the appropriate foundation for entry into career opportunities in business, aviation management, finance, or flight operations. Course requirements include computer applications, group/individual projects and presentations, and a blend of theory and applications to best prepare students for a variety of positions in the workplace. Colloquia, forums, visiting speakers, interesting field trip experiences, and interdisciplinary opportunities/activities serve to enrich the curriculum.

Diverse elective courses allow students to broaden their general education interests or pursue specific interests in many specialized areas, including international commerce, economics/finance, aviation/aerospace, security and intelligence, the environment, aviation safety, and culture and language. A variety of unique “minors” (minor programs of study) are available for interested students wishing to supplement their formal academic preparation with specialized coursework in more than 20 additional areas of study.

Active business/aviation related clubs on campus include Phi Beta Lambda (a business-focused organization providing students an opportunity to travel to state and national leadership conferences for participation in competitive events) and the American Association of Airport Executives (an aviation management-focused association, with prior travel to Chicago, Las Vegas, Toronto, Seattle, San Francisco and Hong Kong).

Our students are encouraged to think beyond traditional academic boundaries and seek workplace and cultural experiences that will enrich and enlighten them on the evolving workplace and the global business environment. Unique internships and cooperative educational experiences are available and encouraged, with staff assigned to assist students in position identification and placement. Numerous summer-abroad experiences are available for students wishing to increase their international perspectives. Previous summer-abroad academic programs have been offered in Paris, London, Italy, Poland, China, Germany, Ecuador, Chile, and Mexico.

A Business Industry Advisory Board provides guidance on the needs of business, government, and the aviation industry. Department-sponsored tutoring and labs are available.

Dedicated faculty advisors assist ABA students in evaluating the many opportunities available to them in this program. Some courses may require prerequisite subject knowledge or particular class standing. Course descriptions, included in this catalog, should be reviewed prior to registering for classes, to ensure proper placement.
Degree Requirements

The Bachelor of Science degree in Aviation Business Administration (ABA) requires successful completion of a minimum of 120 credit hours, and is normally completed in eight semesters. Designed for students interested in obtaining a strong business foundation with emphasis on specific aviation applications, the student may select an Area of Concentration in Management, Finance, Flight Operations-Fixed Wing, Flight Operations - Helicopter, and Airport Management.

Students should declare their Area of Concentration at the beginning of their sophomore year. Students who want to specialize in more than one Area of Concentration may cross-utilize up to 6 credit hours toward the second area of concentration. Students who participate in the Cooperative Education program may substitute up to 6 credit hours, if approved, toward the specified courses required in their Area of Concentration.

Students enrolled in the Air Force or Army ROTC program may substitute AF or MSL courses for the open elective courses.

Select Aviation Business Administration program offerings at the Prescott Campus are accredited by the Aviation Accreditation Board International (AABI). The Embry-Riddle Aeronautical University – Prescott Bachelor of Science degree program in Aviation Business Administration is a member of the Association of Collegiate Business Schools and Programs (ACBSP) and is in candidacy for accreditation. In order to be awarded an ABA degree, a student is required to complete a minimum of 80% of the business core and area of concentration in residence or transfer those credits from institutions approved by the Department Chair.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA 102</td>
<td>Introduction to Aviation Business and Industry -OR-</td>
<td></td>
</tr>
<tr>
<td>AS 120</td>
<td>Principles of Aeronautical Science</td>
<td>3</td>
</tr>
<tr>
<td>BA 201</td>
<td>Principles of Management</td>
<td>3</td>
</tr>
<tr>
<td>BA 210</td>
<td>Financial Accounting</td>
<td>3</td>
</tr>
<tr>
<td>BA 221</td>
<td>Advanced Computer-Based Systems</td>
<td>3</td>
</tr>
<tr>
<td>BA 311</td>
<td>Marketing</td>
<td>3</td>
</tr>
<tr>
<td>BA 312</td>
<td>Managerial Accounting</td>
<td>3</td>
</tr>
<tr>
<td>BA 319</td>
<td>Managerial and Organizational Behavior</td>
<td>3</td>
</tr>
<tr>
<td>BA 320</td>
<td>Business Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>BA 325</td>
<td>Social Responsibility and Ethics in Management</td>
<td></td>
</tr>
<tr>
<td>BA 332</td>
<td>Corporate Finance I</td>
<td>3</td>
</tr>
<tr>
<td>BA 335</td>
<td>International Business</td>
<td>3</td>
</tr>
<tr>
<td>BA 390</td>
<td>Business Law</td>
<td>3</td>
</tr>
<tr>
<td>BA 420</td>
<td>Management of Production and Operations</td>
<td>3</td>
</tr>
<tr>
<td>BA 436</td>
<td>Strategic Management</td>
<td>3</td>
</tr>
<tr>
<td>EC 211</td>
<td>Macroeconomics</td>
<td>3</td>
</tr>
<tr>
<td>EC 315</td>
<td>Managerial Economics</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>48</td>
</tr>
</tbody>
</table>
Areas of Concentration

Airport Management

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA 408</td>
<td>Airport Management</td>
<td>3</td>
</tr>
<tr>
<td>BA 308</td>
<td>Public Administration</td>
<td>3</td>
</tr>
<tr>
<td>BA 418</td>
<td>Airport Administration and Finance**</td>
<td>3</td>
</tr>
<tr>
<td>BA/EC</td>
<td>Business Electives (300-400 level)</td>
<td>6</td>
</tr>
</tbody>
</table>

Total Credits 15

Finance

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA 334</td>
<td>Investment Analysis -OR-</td>
<td>3</td>
</tr>
<tr>
<td>BA 342</td>
<td>International Finance</td>
<td>3</td>
</tr>
<tr>
<td>BA 434</td>
<td>Corporate Finance II**</td>
<td>3</td>
</tr>
<tr>
<td>EC 312</td>
<td>Money and Banking</td>
<td>3</td>
</tr>
<tr>
<td>BA/EC</td>
<td>Business Electives (300-400 level)</td>
<td>6</td>
</tr>
</tbody>
</table>

Total Credits 15

Flight Operations - Fixed Wing

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS 119</td>
<td>Private Pilot Operations</td>
<td>4</td>
</tr>
<tr>
<td>AS 221</td>
<td>Instrument Pilot Operations</td>
<td>3</td>
</tr>
<tr>
<td>AS 321</td>
<td>Commercial Pilot Operations**</td>
<td>3</td>
</tr>
<tr>
<td>FA 119</td>
<td>Private Single Flight</td>
<td>1</td>
</tr>
<tr>
<td>FA 221</td>
<td>Instrument Single Flight</td>
<td>1</td>
</tr>
<tr>
<td>FA 321</td>
<td>Commercial Single Flight</td>
<td>1</td>
</tr>
</tbody>
</table>

Total Credits 16

Flight Operations - Helicopter

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS 142</td>
<td>Private Helicopter Operations</td>
<td>3</td>
</tr>
<tr>
<td>AS 252</td>
<td>Instrument Helicopter Operations</td>
<td>3</td>
</tr>
<tr>
<td>AS 372</td>
<td>Commercial Helicopter Operations**</td>
<td>3</td>
</tr>
<tr>
<td>FH 142</td>
<td>Helicopter Pilot Flight Private</td>
<td>1</td>
</tr>
<tr>
<td>FH 252</td>
<td>Helicopter Pilot Flight Instrument</td>
<td>1</td>
</tr>
<tr>
<td>FH 372</td>
<td>Helicopter Pilot Flight Commercial.</td>
<td>1</td>
</tr>
</tbody>
</table>

Total Credits 15

Management

The focus is to produce an aviation management generalist. The culminating focus course is BA 436.** Select any five designated electives of which a minimum of two must be aviation focused and a minimum of four must be BA/EC.

Courses Available as Designated Electives

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA 308</td>
<td>Public Administration</td>
<td>3</td>
</tr>
<tr>
<td>BA 322</td>
<td>Aviation Insurance**</td>
<td>3</td>
</tr>
<tr>
<td>BA 324</td>
<td>Aviation Labor Relations**</td>
<td>3</td>
</tr>
<tr>
<td>BA 333</td>
<td>Personal Financial Planning</td>
<td>3</td>
</tr>
<tr>
<td>BA 334</td>
<td>Investment Analysis</td>
<td>3</td>
</tr>
<tr>
<td>BA 342</td>
<td>International Finance</td>
<td>3</td>
</tr>
<tr>
<td>BA 408</td>
<td>Airport Management**</td>
<td>3</td>
</tr>
<tr>
<td>BA 410</td>
<td>Management of Air Cargo**</td>
<td>3</td>
</tr>
<tr>
<td>BA 415</td>
<td>Airline Management**</td>
<td>3</td>
</tr>
<tr>
<td>BA 418</td>
<td>Airport Administration and Finance**</td>
<td>3</td>
</tr>
<tr>
<td>BA 421</td>
<td>Small Business Management</td>
<td>3</td>
</tr>
<tr>
<td>BA 425</td>
<td>Trends and Current Problems in Air Transportation***</td>
<td>3</td>
</tr>
<tr>
<td>BA 427</td>
<td>Management of the Multicultural Workforce</td>
<td>3</td>
</tr>
<tr>
<td>BA 434</td>
<td>Corporate Finance II**</td>
<td>3</td>
</tr>
<tr>
<td>BA 399</td>
<td>Special Topics in Business</td>
<td>3</td>
</tr>
<tr>
<td>EC 312</td>
<td>Money and Banking</td>
<td>3</td>
</tr>
<tr>
<td>EC 420</td>
<td>Economics of Air Transportation</td>
<td>3</td>
</tr>
<tr>
<td>EC 399</td>
<td>Special Topics in Economics</td>
<td>3</td>
</tr>
<tr>
<td>AES 403</td>
<td>Wildlife and Airports**</td>
<td>3</td>
</tr>
<tr>
<td>AES 406</td>
<td>Environmental Management</td>
<td>3</td>
</tr>
<tr>
<td>AS 402</td>
<td>Airline Operations**</td>
<td>3</td>
</tr>
<tr>
<td>SIS 420</td>
<td>Aviation Security and Technology**</td>
<td>3</td>
</tr>
</tbody>
</table>

Open Electives 17/18

Total Degree Requirements 120

NOTES:

* Must be approved by the Department Chair.

** These classes are considered the concentration capstone for the respective concentration.

*** These classes are considered aviation focused.

Students selecting Flight Operations areas of concentration need to begin the coursework as soon as possible. See the Advanced Standing section under University Academic Regulations and Procedures and the Aeronautical Science notes under the Aeronautical Science degree in this catalog for information relating to these courses.
Suggested Program of Study

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA 102</td>
<td>Introduction to Aviation Business and Industry</td>
<td>3</td>
</tr>
<tr>
<td>AS 120</td>
<td>Principles of Aeronautical Science</td>
<td>3</td>
</tr>
<tr>
<td>BA 201</td>
<td>Principles of Management</td>
<td>3</td>
</tr>
<tr>
<td>EC 210</td>
<td>Microeconomics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Open Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td>30</td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA 210</td>
<td>Financial Accounting</td>
<td>3</td>
</tr>
<tr>
<td>BA 221</td>
<td>Advanced Computer Based Systems</td>
<td>3</td>
</tr>
<tr>
<td>BA 311</td>
<td>Marketing</td>
<td>3</td>
</tr>
<tr>
<td>EC 211</td>
<td>Macroeconomics</td>
<td>3</td>
</tr>
<tr>
<td>MA 222</td>
<td>Business Statistics</td>
<td>3</td>
</tr>
<tr>
<td>MA 320</td>
<td>Decision Mathematics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Open Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td>30</td>
</tr>
</tbody>
</table>

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA 312</td>
<td>Managerial Accounting</td>
<td>3</td>
</tr>
<tr>
<td>BA 319</td>
<td>Managerial and Organizational Behavior</td>
<td>3</td>
</tr>
<tr>
<td>BA 320</td>
<td>Business Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>BA 332</td>
<td>Corporate Finance I</td>
<td>3</td>
</tr>
<tr>
<td>BA 335</td>
<td>International Business</td>
<td>3</td>
</tr>
<tr>
<td>EC 315</td>
<td>Managerial Economics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Concentration Courses</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Open Elective</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td>30</td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA 325</td>
<td>Social Responsibility and Ethics in Management</td>
<td>3</td>
</tr>
<tr>
<td>BA 390</td>
<td>Business Law</td>
<td>3</td>
</tr>
<tr>
<td>BA 420</td>
<td>Management of Production and Operations</td>
<td>3</td>
</tr>
<tr>
<td>BA 436</td>
<td>Strategic Management</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Concentration Courses</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Open Electives</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td>30</td>
</tr>
</tbody>
</table>

Total Degree Credits 120

This suggested sequencing is appropriate for most ABA students. However, those seeking a Flight Operations concentration should consult their advisor, as their particular (flight-oriented) concentration courses should be scheduled much earlier in the sequence.

Embry-Riddle courses in the general education categories of Communication Theory and Skills, Mathematics, Computer Science, Physical and Life Sciences, Humanities, and Social Sciences may be chosen from those listed below, assuming prerequisite requirements are met with permission of advisor. Courses from other institutions are acceptable if they fall into these broad categories and are at the level specified above in the Aviation Business Administration vertical outline. Other courses may also be used with permission of the Department of Business Chair.

Communication Theory and Skills
- COM 122, 219, and 221 -OR- COM 222

Computer Science
- BA 120 -OR- IT 109

Humanities
- **LOWER-LEVEL:**
 - HU 140 series
- **UPPER-LEVEL:**
 - HU 300-400 level

Mathematics
- College Algebra or higher, MA 222 and MA 320

Physical and Life Sciences
- Any AES or PS course, SIS 260 or WX 201, of which one course must include a laboratory.

Social Sciences
- **LOWER-LEVEL:**
 - EC 210 -AND- one of the following: PSY 101, SS 110-130, 204, 210
- **UPPER-LEVEL:**
 - 300-400 level EC, PSY, or SS
Academic Programs at the Prescott Campus

Aviation Environmental Science
Bachelor of Science

The Bachelor of Science degree in Aviation Environmental Science (AES) is designed to develop leaders and global citizens for the 21st century by providing students with a multidisciplinary education including both theoretical and applied knowledge in the field of aviation environmental science. This degree gives students precisely the knowledge and technical skills needed to tackle the environmental and safety problems found in the aviation and aerospace industry.

Our graduates will be uniquely prepared to understand and function effectively in the complex and varied world of aviation environmental science. Our graduates will be able to secure positions in the fields of environmental consulting, aviation regulation, and consultation to industry and government, such as environmental protection specialist for FAA, EPA, and federal and state air quality specialist, and airports and municipalities' environmental specialist.

Degree Requirements

The AES program consists of several components: general education, AES core, designated electives, and a co-op experience. The general education element provides the fundamentals in math, social sciences, computers, and communication. The AES core is designed to give the student basic science knowledge and demonstrate the ways in which business, economics, geography, and policy studies integrate with environmental aspects of their future careers. AES students are also required to complete a co-op experience prior to graduation. This experience will link their AES academic work with their professional future. The Bachelor of Science in Aviation Environmental Science (AES) requires successful completion of a minimum of 120 credit hours.

Aviation Environmental Science Core Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AES 111</td>
<td>Plant Biology</td>
<td>4</td>
</tr>
<tr>
<td>AES 112</td>
<td>Animal Biology</td>
<td>4</td>
</tr>
<tr>
<td>AES 142</td>
<td>Introduction to Environmental Science</td>
<td>3</td>
</tr>
<tr>
<td>AES 240</td>
<td>Natural History of the Region</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-OR-</td>
<td></td>
</tr>
<tr>
<td>AES 309</td>
<td>Principles of Ecology</td>
<td>3/4</td>
</tr>
<tr>
<td>AES 308</td>
<td>Atmospheric Environmental Studies</td>
<td>3</td>
</tr>
<tr>
<td>AES 330</td>
<td>Environmental Consulting</td>
<td>3</td>
</tr>
<tr>
<td>AES 403</td>
<td>Wildlife and Airports</td>
<td>3</td>
</tr>
<tr>
<td>AES 406</td>
<td>Environmental Management</td>
<td>3</td>
</tr>
<tr>
<td>AES 490</td>
<td>Senior Seminar</td>
<td>3</td>
</tr>
<tr>
<td>AS 120</td>
<td>Principles of Aeronautical Science</td>
<td>3</td>
</tr>
<tr>
<td>BA 201</td>
<td>Principles of Management</td>
<td>3</td>
</tr>
<tr>
<td>BA 308</td>
<td>Public Administration</td>
<td>3</td>
</tr>
<tr>
<td>BA 390</td>
<td>Business Law</td>
<td>3</td>
</tr>
<tr>
<td>BA 408</td>
<td>Airport Management</td>
<td>3</td>
</tr>
<tr>
<td>EC 210</td>
<td>Microeconomics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-OR-</td>
<td></td>
</tr>
<tr>
<td>EC 211</td>
<td>Macroeconomics</td>
<td>3</td>
</tr>
<tr>
<td>PS 108</td>
<td>Contemporary Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>SS 204</td>
<td>Introduction to Geography</td>
<td>3</td>
</tr>
<tr>
<td>CEAES 396</td>
<td>Internship (co-op)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td>56-57</td>
</tr>
</tbody>
</table>

Designated Electives (choose 6)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AES 306</td>
<td>Consumer and Hazardous Waste</td>
<td>3</td>
</tr>
<tr>
<td>AES 312</td>
<td>Plant Identification</td>
<td>3</td>
</tr>
<tr>
<td>AES 313</td>
<td>Riparian Ecology</td>
<td>3</td>
</tr>
<tr>
<td>WX 201</td>
<td>Meteorology I</td>
<td>3</td>
</tr>
<tr>
<td>WX 261</td>
<td>Applied Climatology</td>
<td>3</td>
</tr>
<tr>
<td>BA 311</td>
<td>Marketing</td>
<td>3</td>
</tr>
<tr>
<td>BA 335</td>
<td>International Business</td>
<td>3</td>
</tr>
</tbody>
</table>
Suggested Program of Study

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AES 111</td>
<td>Plant Biology</td>
<td>4</td>
</tr>
<tr>
<td>AES 112</td>
<td>Animal Biology</td>
<td>4</td>
</tr>
<tr>
<td>AES 142</td>
<td>Introduction to Environmental Science</td>
<td>3</td>
</tr>
<tr>
<td>COM 122</td>
<td>English Composition and Literature</td>
<td>3</td>
</tr>
<tr>
<td>COM 219</td>
<td>Speech</td>
<td>3</td>
</tr>
<tr>
<td>HU 14X</td>
<td>Humanities</td>
<td>3</td>
</tr>
<tr>
<td>IT 109</td>
<td>Introduction to Computers and Applications</td>
<td>3</td>
</tr>
<tr>
<td>MA 120</td>
<td>Quantitative Methods I</td>
<td>3</td>
</tr>
<tr>
<td>MA 222</td>
<td>Business Statistics</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits 29

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AES 240</td>
<td>Natural History of the Region</td>
<td>3</td>
</tr>
<tr>
<td>AES 309</td>
<td>Principles of Ecology</td>
<td>3/4</td>
</tr>
<tr>
<td>AS 120</td>
<td>Principles of Aeronautical Science</td>
<td>3</td>
</tr>
<tr>
<td>BA 201</td>
<td>Principles of Management</td>
<td>3</td>
</tr>
<tr>
<td>COM 221</td>
<td>Technical Report Writing</td>
<td>3</td>
</tr>
<tr>
<td>PS 108</td>
<td>Contemporary Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>SS 204</td>
<td>Introduction to Geography</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Lower-Level SS</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Upper-Level SS/SS</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Designated Electives</td>
<td>6</td>
</tr>
</tbody>
</table>

Total Credits 30-31

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AES 308</td>
<td>Atmospheric Environmental Studies</td>
<td>3</td>
</tr>
<tr>
<td>AES 330</td>
<td>Environmental Consulting</td>
<td>3</td>
</tr>
<tr>
<td>AES 403</td>
<td>Wildlife and Airports</td>
<td>3</td>
</tr>
<tr>
<td>BA 308</td>
<td>Public Administration</td>
<td>3</td>
</tr>
<tr>
<td>BA 390</td>
<td>Business Law</td>
<td>3</td>
</tr>
<tr>
<td>EC 210</td>
<td>Microeconomics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-OR-</td>
<td></td>
</tr>
<tr>
<td>EC 211</td>
<td>Macroeconomics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Upper-Level SS/SS</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Designated Electives</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Open Electives</td>
<td>6</td>
</tr>
</tbody>
</table>

Total Credits 30

SUMMER

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AES 406</td>
<td>Environmental Management</td>
<td>3</td>
</tr>
<tr>
<td>AES 490</td>
<td>Senior Seminar</td>
<td></td>
</tr>
<tr>
<td>BA 408</td>
<td>Airport Management</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Designated Electives</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Open Electives</td>
<td>9/10</td>
</tr>
</tbody>
</table>

Total Credits 30/31

TOTAL DEGREE CREDITS 120

- **Communication Theory and Skills (9 credits)**
 - COM 122, 219, and 221, or 222
- **Humanities (9 credits)**
 - Lower-Level: HU 14X
 - Upper-Level: HU 300-400
- **Social Sciences (3 credits)**
 - Lower-Level: SS 100-200
- **Computer Science (3 credits)**
 - IT 109
- **Mathematics (6 credits)**
 - MA 120, 222
Global Security and Intelligence Studies

Bachelor of Science

The Bachelor of Science degree in Global Security and Intelligence Studies (GSIS) is designed to develop future security and intelligence professionals with a broad understanding of global interrelationships in politics, law, government, economics, social change, science and technology, military developments, psychological dimensions of military and terrorist threats, cyber-security, environmental security issues, and human cultures. The program will explore the implications of these multiple factors to the security of nation-states and the future of human society in a global context.

The program provides the student with the interdisciplinary skills to analyze the interactions between all these elements and to communicate their ideas effectively in both written and oral contexts. Above all, GSIS students will be able to exhibit innovative problem-solving and critical-thinking skills in issues such as terrorism and asymmetrical warfare, transportation (especially aviation and aerospace) security, threats to corporate personnel and facilities, threats to computer and telecommunications infrastructure, trafficking networks in illicit services and substances, proscribed weapons technologies such as weapons of mass destruction, international crime, population migrations, natural disasters, pandemics, and homeland security.

Global Security and Intelligence Studies students will be very competitive in obtaining positions and performing (1) with federal government intelligence, security, law enforcement and emergency management agencies (2) with the Department of Defense and the armed services (3) with security, competitive intelligence and information protection departments in the private sector especially those involved in aviation and transportation security (4) with state, county and local homeland security, law enforcement and emergency management organizations, (5) as students in graduate schools focusing on intelligence and national security, international relations, regional studies, (6) as students in law schools (7) as staffers for political leaders and legislative representatives specializing in national intelligence and security issues.

Degree Requirements

The GSIS program consists of seven interrelated components: general education, a GSIS core, area of concentration, electives, foreign languages, senior project, and an optional co-op or study-abroad experience.

The general education requirement provides the fundamentals in the sciences, mathematics, the social sciences and liberal arts, oral and written communication, and computer operations and applications.

The science requirement deepens the student’s knowledge and understanding of science and technology, key areas for the security/intelligence student.

Together, the GSIS core is a multidisciplinary array of courses that brings a number of fields to the study of security and intelligence, including geography, forensic science, the law, economics, psychology, government and foreign policy, and the history of intelligence.
Academic Programs at the Prescott Campus

The GSIS core and the designated electives are designed to demonstrate the ways in which societies and cultures, economies, systems of thought, military developments, and environmental concerns are shaping the international system.

In the senior year, the GSIS major will select one of three areas of concentration: Pre-Law and Government, Intelligence, or Criminal Justice and Security. Each area of concentration contains at least five courses, allowing the student to gain a deeper understanding in a more specialized field. A fourth option for the area of concentration is to choose a total of five courses from both Intelligence and Security, two from one and three from the other. This would be counted as an area of concentration in Intelligence and Security.

GSIS students are required to complete a senior project prior to graduation. The options include a senior thesis (SIS 475), a senior internship including a research paper (SIS 470), or a semester-long capstone course including a simulated intelligence and security scenario using the GSIS operations center (SIS 415). The senior internship is designed to provide the students with practical experience and increase their employment opportunities. The capstone scenario will enable the student to demonstrate his or her knowledge and understanding gained in the GSIS Program in a simulated crisis situation in a real-world environment. The thesis will encompass significant research into a topic relevant to security and intelligence studies and provide original recommendations and conclusions.

The GSIS program encourages students to gain international experience through travel or study abroad. It promotes a strong grounding in history, a capacity for critical thinking, good writing and communication skills, and, in the selection of designated and open electives, a knowledge and appreciation of the arts and humanities.

The Bachelor of Science in Global Security and Intelligence Studies (GSIS) requires successful completion of a minimum of 122 credit hours.

Two Degree Tracks
Because knowledge of a second language, or indeed multiple languages, is an essential skill for the intelligence and security professional today, GSIS students must meet a foreign language requirement.

The GSIS program provides the student with two curricular tracks: the GSIS Standard track and the GSIS Chinese track.

Students who take the Standard track are required to demonstrate oral and reading competency in a language other than English, or by taking 12 credits of college-level foreign language courses in one language.

Students who take the Chinese track will take the same subject area courses and the same number of credits as those in the Standard track.

The overall difference is that, in the Chinese track, students will take 45 credits in courses that will be entirely in Chinese or have a significant Chinese component with supplementary reading and writing assignments in English, rather than the 12 credits in a foreign language required by the Standard track. The Chinese track is not open to native speakers of Chinese.

The 45 credits include the 12 required foreign language credits for the Standard track, the 9 credits in the Chinese Minor, and 24 additional credits which will be offered by teaching content courses in Mandarin Chinese with supplementary reading and writing assignments in English. Study abroad in the summer of the sophomore year is required for Chinese track students.
Degree Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Education</td>
<td></td>
<td>37</td>
</tr>
<tr>
<td>GSIS Core</td>
<td></td>
<td>37</td>
</tr>
<tr>
<td>Area of Concentration</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Foreign Language (not Chinese Track)</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>GSIS Designated Electives</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Open Electives</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Senior Project</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Total Degree Credits 122

Global Studies Core Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA 201</td>
<td>Principles of Management</td>
<td>3</td>
</tr>
<tr>
<td>EC 210</td>
<td>Microeconomics</td>
<td>3</td>
</tr>
<tr>
<td>SIS 100</td>
<td>Introduction to Global Security and Intelligence Studies</td>
<td>3</td>
</tr>
<tr>
<td>SIS 200</td>
<td>Introduction to the U.S. Legal System -OR-</td>
<td>3</td>
</tr>
<tr>
<td>SS 290</td>
<td>History of Modern Europe</td>
<td>3</td>
</tr>
<tr>
<td>SIS 260</td>
<td>Forensic Science Applications in Security and Intelligence</td>
<td>4</td>
</tr>
<tr>
<td>SIS 315</td>
<td>Studies in Global Intelligence I</td>
<td>3</td>
</tr>
<tr>
<td>SIS 325</td>
<td>History of Terrorism</td>
<td>3</td>
</tr>
<tr>
<td>SS 204</td>
<td>Introduction to Geography</td>
<td>3</td>
</tr>
<tr>
<td>SS 312</td>
<td>Personality and Profiling</td>
<td>3</td>
</tr>
<tr>
<td>SS 320</td>
<td>Government of the U.S.</td>
<td>3</td>
</tr>
<tr>
<td>SS 327</td>
<td>International Relations</td>
<td>3</td>
</tr>
<tr>
<td>SS 340</td>
<td>U.S. Foreign Policy</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits 37

Foreign Language Requirement

A minimum of twelve credits of foreign language are required for degree completion. All courses must be in the same language.

GSIS Areas of Concentration

Choose one of these Areas of Concentration or select two courses from one and three courses from the other for a joint AOC in Security and Intelligence.

PRE-LAW AND GOVERNMENT

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA 390</td>
<td>Business Law</td>
<td>3</td>
</tr>
<tr>
<td>SS 410</td>
<td>International Human Rights</td>
<td>3</td>
</tr>
<tr>
<td>SIS 312</td>
<td>Global Crime and International Justice Systems</td>
<td>3</td>
</tr>
<tr>
<td>SIS 416</td>
<td>Introduction to Middle Eastern Comparative Law</td>
<td>3</td>
</tr>
</tbody>
</table>

SIS 421 History and Philosophy of Law/Jurisprudence | 3

Total Credits 15

INTELLIGENCE (CHOOSE FIVE)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIS 317</td>
<td>Political Change, Revolution, and War</td>
<td>3</td>
</tr>
<tr>
<td>SIS 323</td>
<td>Intelligence and Technology</td>
<td>3</td>
</tr>
<tr>
<td>SIS 328</td>
<td>Intelligence Analysis, Writing, and Briefing</td>
<td>3</td>
</tr>
<tr>
<td>SIS 335</td>
<td>Counter-Intelligence</td>
<td>3</td>
</tr>
<tr>
<td>SIS 400</td>
<td>International Security and Globalization</td>
<td>3</td>
</tr>
<tr>
<td>SIS 405</td>
<td>Environment and Security</td>
<td>3</td>
</tr>
<tr>
<td>SIS 418</td>
<td>Islam: Origins, History, and Role in the Modern World</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits 15

CRIMINAL JUSTICE AND SECURITY

(CHOSE FIVE)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIS 312</td>
<td>Global Crime and International Justice Systems</td>
<td>3</td>
</tr>
<tr>
<td>SIS 410</td>
<td>Corporate Security Management and Operations</td>
<td>3</td>
</tr>
<tr>
<td>SIS 420</td>
<td>Aviation Security and Technology</td>
<td>3</td>
</tr>
<tr>
<td>SIS 422</td>
<td>Homeland Security and Technology</td>
<td>3</td>
</tr>
<tr>
<td>SIS 425</td>
<td>Information Protection and Computer Security</td>
<td>3</td>
</tr>
<tr>
<td>SIS 430</td>
<td>Emergency Management and Contingency Planning</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits 15

GSIS DESIGNATED ELECTIVES (CHOOSE 3)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA 335</td>
<td>International Business</td>
<td>3</td>
</tr>
<tr>
<td>CEGIS</td>
<td>Internship</td>
<td>3</td>
</tr>
<tr>
<td>EC 211</td>
<td>Macroeconomics</td>
<td>3</td>
</tr>
<tr>
<td>HU 341</td>
<td>World Philosophy</td>
<td>3</td>
</tr>
<tr>
<td>HU 345</td>
<td>Comparative Religions</td>
<td>3</td>
</tr>
<tr>
<td>HU 420</td>
<td>Applied Cross-Cultural Communication</td>
<td>3</td>
</tr>
<tr>
<td>PSY 350</td>
<td>Social Psychology</td>
<td>3</td>
</tr>
<tr>
<td>RS 305</td>
<td>Asian Literature</td>
<td>3</td>
</tr>
<tr>
<td>SIS 320</td>
<td>Topics in Global History: Politics and Culture</td>
<td>3</td>
</tr>
<tr>
<td>SS 260</td>
<td>Cultural Anthropology</td>
<td>3</td>
</tr>
<tr>
<td>SS 410</td>
<td>International Human Rights</td>
<td>3</td>
</tr>
<tr>
<td>SS 333</td>
<td>U.S.-Asian Relations</td>
<td>3</td>
</tr>
<tr>
<td>SS 336</td>
<td>The Modern Middle East in World Affairs</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits 9
Suggested Program of Study

Standard Track

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM122</td>
<td>English Composition and Literature</td>
<td>3</td>
</tr>
<tr>
<td>IT</td>
<td>Information Technology</td>
<td>3</td>
</tr>
<tr>
<td>HU</td>
<td>Lower-Level Humanities (140 series)</td>
<td>3</td>
</tr>
<tr>
<td>MA</td>
<td>Mathematics*</td>
<td>3</td>
</tr>
<tr>
<td>AES 111</td>
<td>Plant Biology</td>
<td>4</td>
</tr>
<tr>
<td>PSY 101</td>
<td>Introduction to Psychology</td>
<td>3</td>
</tr>
<tr>
<td>SIS 100</td>
<td>Introduction to Global Security</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>and Intelligence Studies</td>
<td></td>
</tr>
<tr>
<td>SIS 200</td>
<td>Introduction to the U.S. Legal System</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits 31

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA 201</td>
<td>Principles of Management</td>
<td>3</td>
</tr>
<tr>
<td>COM219</td>
<td>Speech</td>
<td>3</td>
</tr>
<tr>
<td>COM223</td>
<td>Intelligence Writing</td>
<td>3</td>
</tr>
<tr>
<td>EC 210</td>
<td>Microeconomics</td>
<td>3</td>
</tr>
<tr>
<td>L</td>
<td>Foreign Language I & II</td>
<td>6</td>
</tr>
<tr>
<td>MA</td>
<td>Mathematics*</td>
<td>3</td>
</tr>
<tr>
<td>PS</td>
<td>Physical Science*</td>
<td>3</td>
</tr>
<tr>
<td>SIS 260</td>
<td>Forensic Science Applications in Security and Intelligence</td>
<td>4</td>
</tr>
<tr>
<td>SS 327</td>
<td>International Relations</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits 31

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>Foreign Language III & IV</td>
<td>6</td>
</tr>
<tr>
<td>SIS 315</td>
<td>Studies in Global Intelligence I</td>
<td>3</td>
</tr>
<tr>
<td>SIS 325</td>
<td>History of Terrorism</td>
<td>3</td>
</tr>
<tr>
<td>SS 320</td>
<td>Government of the U.S.</td>
<td>3</td>
</tr>
<tr>
<td>SS 312</td>
<td>Personality and Profiling</td>
<td>3</td>
</tr>
<tr>
<td>SS 340</td>
<td>U.S. Foreign Policy</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Designated Electives</td>
<td>9</td>
</tr>
</tbody>
</table>

Total Credits 30

SENIOR YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area of Concentration</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Upper-Level HU/SS/RS Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Senior Course**</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Open Electives</td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>

Total Credits 30

TOTAL DEGREE CREDITS 122

Chinese Track

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCH 103</td>
<td>Mandarin Chinese I & II</td>
<td>6</td>
</tr>
<tr>
<td>COM122</td>
<td>English Composition and Literature</td>
<td>3</td>
</tr>
<tr>
<td>SIS 100</td>
<td>Introduction to Global Security</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>and Intelligence Studies</td>
<td></td>
</tr>
<tr>
<td>LCH 203</td>
<td>Mandarin Chinese III & IV</td>
<td>6</td>
</tr>
<tr>
<td>IT</td>
<td>Information Technology</td>
<td>3</td>
</tr>
<tr>
<td>MA</td>
<td>Mathematics*</td>
<td>3</td>
</tr>
<tr>
<td>PSY 101</td>
<td>Introduction to Psychology</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits 27

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCH 303</td>
<td>Intermediate Chinese I & II</td>
<td>6</td>
</tr>
<tr>
<td>AES 111</td>
<td>Plant Biology</td>
<td>4</td>
</tr>
<tr>
<td>BA 201</td>
<td>Principles of Management</td>
<td>3</td>
</tr>
<tr>
<td>SIS 200</td>
<td>Introduction to the U.S. Legal System</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>-OR-</td>
<td></td>
</tr>
<tr>
<td>SS 290</td>
<td>History of Modern Europe</td>
<td>3</td>
</tr>
<tr>
<td>LCH 205</td>
<td>Modern Chinese Films</td>
<td>3</td>
</tr>
<tr>
<td>LCH 208</td>
<td>Speech in Chinese</td>
<td>3</td>
</tr>
<tr>
<td>COM223</td>
<td>Intelligence Writing</td>
<td>3</td>
</tr>
<tr>
<td>MA</td>
<td>Mathematics*</td>
<td>3</td>
</tr>
</tbody>
</table>

SUMMER STUDY IN CHINA

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCH 206</td>
<td>Contemporary Chinese Literature</td>
<td>3</td>
</tr>
<tr>
<td>LCH 207</td>
<td>Introduction to Geography</td>
<td>3</td>
</tr>
<tr>
<td>LCH 402</td>
<td>Applied Cross-Cultural Communication</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits 37

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCH 306</td>
<td>Asian Literature</td>
<td>3</td>
</tr>
<tr>
<td>EC 210</td>
<td>Microeconomics</td>
<td>3</td>
</tr>
<tr>
<td>SIS 315</td>
<td>Studies in Global Intelligence I</td>
<td>3</td>
</tr>
<tr>
<td>SS 320</td>
<td>Government of the U.S.</td>
<td>3</td>
</tr>
<tr>
<td>LCH 308</td>
<td>History of Terrorism</td>
<td>3</td>
</tr>
<tr>
<td>SIS 260</td>
<td>Forensic Science Applications in Security and Intelligence</td>
<td>4</td>
</tr>
<tr>
<td>SS 327</td>
<td>International Relations</td>
<td>3</td>
</tr>
<tr>
<td>SS 340</td>
<td>U.S. Foreign Policy</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Open Electives</td>
<td>6</td>
</tr>
</tbody>
</table>

Total Credits 31

SENIOR YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCH 307</td>
<td>Personality and Profiling</td>
<td>3</td>
</tr>
<tr>
<td>LCH 400</td>
<td>Eastern and Western Civilizations</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Physical Science**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-OR-</td>
<td></td>
</tr>
</tbody>
</table>
Academic Programs at the Prescott Campus

<table>
<thead>
<tr>
<th>Military Science***</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area of Concentration</td>
<td>15</td>
</tr>
<tr>
<td>Senior Course****</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits 27
Total Credits Taught in Chinese 45
TOTAL DEGREE CREDITS 122

*One Mathematics course must require college algebra as a prerequisite and MA 106 CANNOT be used to meet either requirement.

**Any PS or AES course may be used to meet this requirement. ROTC students in the GSIS Standard track may not use Military Science (AF 401 or MS 401) to meet this requirement.

*** Military Science can only meet this requirement for an ROTC cadet who is in the GSIS Chinese track. The course allowed is either AF 401 or MSL 401.

**** One of the three options below are acceptable to fulfill the Senior Project requirement.

1. SIS 415, Studies in Intelligence II. A capstone course that consists of a semester-long simulation or war game, allowing students to bring to bear all aspects of their education. For Chinese track students enrolled in ROTC, a 3-credit Military Science senior course in lieu of SIS 415.

2. SIS 475, Senior Thesis. Limited to seniors with a GPA of at least 3.4 who plan to attend graduate or law school. Admission is by application.

3. SIS 470, Senior Co-op or Internship. A co-op or internship that requires a major paper.

4. The SIS 110 course pre-requisite for SIS 317, SIS 320, SIS 327, SIS 330 and SIS 418 is waived for students in the GSIS Chinese track.

5. All GSIS students must take the basic intelligence writing course prior to taking SIS 328.

NOTE:
The total number of credits for students enrolled in Air Force ROTC is 126. In addition to the above 122 credits, in the freshmen year, there are 2 Air Force credits and in the sophomore year, there are 2 more credits. The total number of credits for students enrolled in Army ROTC is 128. In addition to the above 122 credits, in the freshmen year, there are 2 Army credits and in the sophomore year, there are 4 more credits.

Since students in the Chinese track will take 9 credit hours during the required sophomore summer study abroad, their class load during regular semesters will not be excessive.
Program Plan of Study and Requirements

The Interdisciplinary Studies program consists of core requirements and three minors. The core requirements in this program help our students to become worldly thinkers who understand that information and skills gleaned from one area of life can be applied to other areas. The program's core requirements respond directly to calls by American corporate leaders for graduates who understand both technology and human beings. To that end, students choose from courses in the humanities, geography, international studies, philosophy and ethics, foreign languages, and psychology. The core prepares students to connect their three minor fields of study meaningfully and usefully. The student chooses a senior capstone experience which most often is the election of a co-op experience.

By combining three minors, students design their own degree programs. Such combinations as security, psychology, safety or space studies, computer science, or psychology offer combinations of fields that the aerospace industry will find valuable. A minor in Asian Studies, coupled with the enhanced general education options, provide an international focus to the degree. Minors in the business areas gives students practical knowledge that combine well with the more technical areas, while a minor in Helicopter Flight remains a popular aviation-related choice. The element of choice in the program gives students experience in planning their own futures. The program seeks to produce students with an entrepreneurial spirit who will cross boundaries, make creative connections, and become leaders in aviation, aerospace, and related industries.

Students meet regularly with the interdisciplinary studies program chair or faculty advisors to develop and revise their individual plan for degree completion. This plan involves evaluating their career objectives and selecting three appropriate minors.

Students should be aware that several courses in each academic year may have prerequisites and/or corequisites. Check the course descriptions at the back of this catalog before registering for classes to ensure appropriate sequencing.

Degree Requirements

The Bachelor of Science degree in Interdisciplinary Studies requires successful completion of a minimum of 120 credit hours, including a minimum of 40 credit hours of upper-division courses (300-400 level).

General Education

<table>
<thead>
<tr>
<th>Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication Theory and Skills*</td>
<td>9</td>
</tr>
<tr>
<td>Computer Science</td>
<td>3</td>
</tr>
<tr>
<td>Lower-Level Humanities*</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics</td>
<td>6</td>
</tr>
<tr>
<td>Physical and Life Sciences</td>
<td>6</td>
</tr>
<tr>
<td>(One course must include a laboratory)</td>
<td></td>
</tr>
<tr>
<td>Lower-Level Social Sciences*</td>
<td>6</td>
</tr>
<tr>
<td>HU/SS 300-400 level*</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits

36
Core Requirements

Cross Discipline Core

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA 201</td>
<td>Principles of Management</td>
<td>. 3</td>
</tr>
<tr>
<td>EGR 115</td>
<td>Introduction to Computing for Engineers</td>
<td>. 3</td>
</tr>
<tr>
<td>PSY 101</td>
<td>Introduction to Psychology**</td>
<td>. 3</td>
</tr>
<tr>
<td>MA 222</td>
<td>Business Statistics**</td>
<td>. 3</td>
</tr>
</tbody>
</table>

Choose one of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS 120</td>
<td>Principles of Aeronautical Science</td>
<td>. 3</td>
</tr>
<tr>
<td>SS 130</td>
<td>History of Aviation in America</td>
<td>. 3</td>
</tr>
<tr>
<td>IS 100</td>
<td>Interdisciplinary Studies: Issues in Facing the Future</td>
<td>. 3</td>
</tr>
<tr>
<td>FAA</td>
<td>Private Pilot Certificate</td>
<td>. 3</td>
</tr>
</tbody>
</table>

**Course required if not taken for general education credit.

Enhanced General Education

Choose 6 credits from the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HU 140-146 Series</td>
<td>. 3</td>
<td></td>
</tr>
<tr>
<td>SS 204</td>
<td>Introduction to Geography</td>
<td>. 3</td>
</tr>
<tr>
<td>SS 210</td>
<td>Introduction to Sociology</td>
<td>. 3</td>
</tr>
<tr>
<td>SIS 100</td>
<td>Introduction to Global Security and Intelligence Studies</td>
<td>. 3</td>
</tr>
<tr>
<td>LAR</td>
<td>Arabic I & II</td>
<td>. 6</td>
</tr>
<tr>
<td>LCH</td>
<td>Chinese I & II</td>
<td>. 6</td>
</tr>
<tr>
<td>LSP</td>
<td>Spanish I & II</td>
<td>. 6</td>
</tr>
<tr>
<td></td>
<td>Summer Study Abroad</td>
<td>. 6</td>
</tr>
</tbody>
</table>

Choose one of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HU 330</td>
<td>Values and Ethics</td>
<td>. 3</td>
</tr>
<tr>
<td>HU 341</td>
<td>World Philosophy**</td>
<td>. 3</td>
</tr>
<tr>
<td>HU 345</td>
<td>Comparative Religions**</td>
<td>. 3</td>
</tr>
</tbody>
</table>

International Focus

Choose two of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA 335</td>
<td>International Business</td>
<td>. 3</td>
</tr>
<tr>
<td>HU 335</td>
<td>Technology and Modern Civilization</td>
<td>. 3</td>
</tr>
<tr>
<td>SIS 312</td>
<td>Global Crime and International Justice Systems</td>
<td>. 3</td>
</tr>
<tr>
<td>SIS 315</td>
<td>Studies in Global Intelligence I</td>
<td>. 3</td>
</tr>
<tr>
<td>SIS 317</td>
<td>Political Change, Revolution, and War</td>
<td>. 3</td>
</tr>
<tr>
<td>SIS 320</td>
<td>Topics in Global History, Politics, and Culture</td>
<td>. 3</td>
</tr>
<tr>
<td>SIS 400</td>
<td>International Security and Globalization</td>
<td>. 3</td>
</tr>
</tbody>
</table>

Capstone Experience

Cooperative Education - OR -

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS 399</td>
<td>Special Topics in Interdisciplinary Studies</td>
<td>3-6</td>
</tr>
</tbody>
</table>

**Courses required if not taken for general education credit.

Minors and Open Electives

Students must select three minor fields of study which range in credits form 15 to 21. Open Electives will complete any remaining credits after the selection of minors.

Total Degree Credits

120

* Embry-Riddle courses in the general education categories of Communication Theory and Skills, Humanities, and Social Sciences may be chosen from those listed below, assuming prerequisite requirements are met.

**Courses required if not taken for general education credit.

Communication Theory and Skills

** LOWER-LEVEL:**

- COM: 122, 219, 221, 222, 223, 260, 351, 360, 364, 410, 411, 420
- HU: 319, 355, 361, 362, 363, 399, 499

** UPPER-LEVEL:**

- HU 300-400 level

Humanities

** LOWER-LEVEL:**

- HU 140-146

** UPPER-LEVEL:**

- HU 300-400 level

Social Sciences

** LOWER-LEVEL:**

- EC 100-200 level
- SS/PSY 100-200 level

** UPPER-LEVEL:**

- SS/PSY 300-400 level
The Bachelor of Science in Space Physics is an applied physics program designed to prepare students for graduate studies in physics and astrophysics, as well as for work in space-related, and aerospace-related industries. Physics is the study of the forces of nature, space and time at the most fundamental level, and provides the foundation on which all physical sciences rest. Students will study the structure of the universe on all scales from the smallest (elementary particles) to the largest (cosmology) and will gain hands-on experience with research-quality equipment and modern sensing techniques.

In their senior year, students satisfying course and GPA requirements have the option of completing a senior thesis project in an area of interest that overlaps with the research interests of a supervising faculty member. Current faculty interests include: astrophysics, particle physics and cosmology, gravitational waves, general relativity, and exotic propulsion.

Admission Requirements

To enter this program, students must have completed four years of high school science and mathematics, demonstrating a high level of competency. Successful candidates for this program will be prepared to enter Calculus I, Physics I, and General Chemistry and must have a good command of written English.

Degree Requirements

The Bachelor of Science in Space Physics is a 120 credit hour program that can be completed in eight semesters. The list of courses below comprises the complete requirements for the degree of Bachelor of Science in Space Physics. The list is organized as a “vertical outline” according to the year in which the courses would normally be taken. While it is not a requirement that the courses be taken during the year shown, students should be aware that several courses in each academic year may have prerequisites and/or corequisites. Therefore, it is recommended that students keep their schedule as close as possible to the one shown below. Before registering for a course, check the course descriptions at the back of this catalog to ensure that all prerequisites and/or corequisites are met. Note that prerequisites for a course are only considered met if the student obtained a grade of “C” or better in the prerequisite courses.

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM</td>
<td>Elective*</td>
<td>3</td>
</tr>
<tr>
<td>MA 241</td>
<td>Calculus and Analytic Geometry I</td>
<td>4</td>
</tr>
<tr>
<td>MA 242</td>
<td>Calculus and Analytic Geometry II</td>
<td>4</td>
</tr>
<tr>
<td>PS 105</td>
<td>General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>PS 204</td>
<td>Astronomy</td>
<td>3</td>
</tr>
<tr>
<td>PS 208</td>
<td>Physics II</td>
<td>3</td>
</tr>
<tr>
<td>PS 215</td>
<td>Physics I</td>
<td>3</td>
</tr>
<tr>
<td>PS 216</td>
<td>Physics I Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>PS 221</td>
<td>Intermediate Physics Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>SS</td>
<td>Lower-Level Elective*</td>
<td>3</td>
</tr>
<tr>
<td>UNIV 101</td>
<td>College Success**</td>
<td>1</td>
</tr>
</tbody>
</table>

Total Credits 31
SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM</td>
<td>Elective*</td>
<td>3</td>
</tr>
<tr>
<td>HU</td>
<td>Lower-Level Elective*</td>
<td>3</td>
</tr>
<tr>
<td>MA 243</td>
<td>Calculus and Analytic Geometry III</td>
<td>4</td>
</tr>
<tr>
<td>MA 341</td>
<td>Introduction to Mathematical Analysis</td>
<td>3</td>
</tr>
<tr>
<td>MA 345</td>
<td>Differential Equations and Matrix Methods</td>
<td>4</td>
</tr>
<tr>
<td>MA 432</td>
<td>Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td>PS 219</td>
<td>Physics III</td>
<td>3</td>
</tr>
<tr>
<td>PS 303</td>
<td>Modern Physics</td>
<td>3</td>
</tr>
<tr>
<td>PS 315</td>
<td>Modern Physics Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>31</td>
</tr>
</tbody>
</table>

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM</td>
<td>Elective*</td>
<td>3</td>
</tr>
<tr>
<td>MA 441</td>
<td>Mathematical Methods for Engineering and Physics I</td>
<td>3</td>
</tr>
<tr>
<td>MA 442</td>
<td>Mathematical Methods for Engineering and Physics II</td>
<td>3</td>
</tr>
<tr>
<td>PS 321</td>
<td>Classical Mechanics I</td>
<td>3</td>
</tr>
<tr>
<td>PS 330</td>
<td>Electricity and Magnetism I</td>
<td>3</td>
</tr>
<tr>
<td>PS 340</td>
<td>Astrophysics I</td>
<td>3</td>
</tr>
<tr>
<td>PS 350</td>
<td>Quantum Mechanics I</td>
<td>3</td>
</tr>
<tr>
<td>PS 380</td>
<td>Optics Laboratory</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Open Electives</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Technical Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>30</td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS 405</td>
<td>Atomic and Nuclear Physics</td>
<td>3</td>
</tr>
<tr>
<td>PS 430</td>
<td>Thermodynamics and Statistical Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>PS 491</td>
<td>A.O.C. Research Thesis, Part II***</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Technical Electives</td>
<td>6</td>
</tr>
<tr>
<td>HU</td>
<td>Upper-Level Elective</td>
<td>3</td>
</tr>
<tr>
<td>SS</td>
<td>Upper-Level Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Open Electives</td>
<td>4</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>28</td>
</tr>
</tbody>
</table>

Total Degree Credits: 120

* Embry-Riddle courses in the general education categories of Communication, Humanities, and Social Sciences may be chosen from those listed below, assuming prerequisites are met. Courses from other institutions are acceptable if they fall into these broad categories and are at the appropriate level.

**Open elective or in excess of degree requirement.

*** In their senior year, eligible students will choose a thesis project in association with a supervising faculty member. Students who are not eligible to take PS 490 and PS 491 will instead take 6 credits of technical electives selected from the list below. Eligibility for taking PS 490 is described in the prerequisites for the course in the course description section of the catalog.

Communications Electives
- COM 122, COM 219, COM 221, COM 222, COM 225, or any COM 3XX or COM 4XX course.

Lower-Level Social Sciences Electives
- EC 200, EC 210, EC 211
- Any Lower-Level SS, RS, or SIS course.

Lower-Level Humanities Electives
- Any HU 140 series.

Upper-Level Humanities Electives
- Any Upper-Level HU course.

Upper-Level Social Sciences Electives
- Any Upper-Level SS course.

Technical Electives
- PS 322 Classical Mechanics II
- PS 331 Electricity and Magnetism II
- PS 375 Planetary Science
- PS 408 Astrophysics II
- PS 412 Particle Physics and Cosmology I
- PS 413 Particle Physics and Cosmology II
- PS 420 Remote Sensing
- PS 422 Space Propulsion
- PS 451 Quantum Mechanics II
- PS 299/399/499 Special Topics in Physics
- MA 412 Probability and Statistics
- MA 443 Complex Variables
- MA 299/399/499 Special Topics in Mathematics

Any other upper-division technical course with approval of the Physics Department Chair.
The College of Aviation is composed of the departments of Aeronautical Science, Meteorology, Safety Science, and the Flight Department, which serves as the flight laboratory component for the Aeronautical Science degree.

The College offers undergraduate degree programs in Aeronautical Science, Applied Meteorology, Aeronautics, Air Traffic Management and a Masters Degree in Safety Science.

The Aeronautical Science Program, combines flight training with academic preparation in the technical and managerial aspects of aviation. This approach to aviation education provides students an added value over traditional flight training programs by focusing on the skills and knowledge required in today’s industry. Foundational skills in mathematics, physics, communications, and aeronautics, including FAA certification as a multi-engine instrument-rated commercial pilot, make up the core of the Aeronautical Science degree. Professional-level aeronautical science and flight courses prepare the graduate for a career as a professional civil or military pilot. The program also provides a foundation for further development in aircraft safety and meteorology.

The Prescott Campus also offers a B.S. in Aeronautics, in which the curriculum is designed to build on the aviation knowledge and skills students bring with them to campus.

The B.S. in Applied Meteorology prepares students for careers in meteorology, including weather forecasting, research, the military, and aviation, including dispatching. The program is housed in a well-equipped, modern facility. The program meets all the requirements for undergraduate study in meteorology recommended by the American Meteorological Society, the National Weather Service, and the U.S. Air Force. Graduates also meet U.S. Office of Personnel Management Qualification Standards for the position of meteorologist. The department offers state-of-the-art rooftop weather-observing equipment and a computer-equipped Weather Center.

For the graduate student, the Master of Science in Safety Science is offered. This degree program provides the graduate with experiences to enhance the practice of safety in the aviation and general industrial environments. The program prepares graduates for several professional job settings, such as director of safety in industry and government, operational and maintenance safety personnel, aviation or industrial safety personnel, flight safety personnel, and aircraft accident investigation.

Students enrolled in the Flight program fly a mix of aircraft, many with advanced avionics, and several state-of-the-art Flight Training devices. Embry-Riddle has positioned the College of Aviation to serve its students with distinction while investigating and developing new education and programs for pilots, meteorologists, and safety and security professionals.

Air Traffic Control – Collegiate Training Initiative (AT-CTI): The Federal
Academic Programs at the Prescott Campus

Aviation Administration (FAA) approved AT-CTI program at the Prescott campus includes the following degree programs: BS in Aeronautical Science, BS in Aeronautics and BS in Applied Meteorology. By current FAA mandate, only students enrolled in one of these degree programs is eligible for inclusion in the AT-CTI program. Students who declare and enroll in one of these three majors may request enrollment in the Air Traffic Control minor area of concentration and may then become eligible for the AT-CTI program by satisfactorily completing the required courses.

The current recommended path to becoming an air traffic control specialist with the FAA is to earn the Bachelor of Science degree in Aeronautics combined with the Air Traffic Control minor. This degree/minor combination provides the aviation background and the professional skills needed for eligibility to become an FAA air traffic controller.

For the student who desires to attend the FAA AT-CTI training but desires to broaden their knowledge and earn a BS degree in meteorology, they can select the Applied Meteorology degree program with the ATC minor.

For those students wanting to earn flight (pilot) certificates, they may select the Aeronautical Science degree program and combine that major with the ATC minor.

Note: The University cannot guarantee selection or employment as an air traffic controller for students completing the AT-CTI program because selection of FAA air traffic controllers for admittance to the FAA Air Traffic Control Academy and a follow-on assignment as an air traffic controller is done strictly at the discretion of the FAA and based upon their staffing needs.
The Aeronautical Science degree program blends flight training with rigorous academic study in a unique manner that provides a strong foundation for a career as a leader in the aviation industry, including airlines, corporate and commercial aviation, or the military. This approach to aviation education gives the student an added value over traditional flight training programs by focusing on the skills and knowledge required by today’s industry. The curriculum provides skills in mathematics, physics, communications, and aeronautics, including FAA certification as a multi-engine instrument-rated pilot. The last two years of matriculation include extensive professional-level Aeronautical Science and flight courses that prepare the graduate for a career as a professional pilot, including airline flight crew operations in multi-crewmember jet transport aircraft. Critical-thinking and problem-solving skills are developed via computer simulations in aircraft performance, navigation, and aircraft systems operation. Effective resource management, human factors, and safety awareness are constantly emphasized throughout the curriculum.

The BS in Aeronautical Science degree requires the student to complete MA 111 and MA 112. For students without the mathematics proficiency needed to begin MA 111, they will be enrolled in MA 106 for their initial mathematics course.

A capstone course for the Aeronautical Science degree is being developed now and will be implemented in 2011. Students who enroll under this catalog should expect the newly developed capstone course to be added as a last semester senior year mandatory degree requirement for graduation.

Degree Requirements

The Bachelor of Science degree in Aeronautical Science may be attained in eight semesters. To earn the degree, successful completion of a minimum of 120 credit hours is required. The purpose of the Aeronautical Science degree program is to prepare the graduate for a productive career as a professional pilot and responsible citizenship in support of aviation and aerospace industries. Upon completion of the curriculum, the student will possess an FAA Commercial Pilot Certificate with single, multi-engine and instrument ratings. Optional advanced flight training includes upset recovery training, certification as a flight instructor and instrument flight instructor, and training as a flight crewmember in a jet transport aircraft.

Students pursuing the Aeronautical Science degree will select one of four specializations after matriculation. Students entering under this catalog may select from the Airline Pilot, Commercial Pilot, Helicopter Pilot, or Military Pilot specializations. Please see the section concerning the restrictions imposed by the Aviation Transportation and Security Act. All students must complete the general education courses, Aeronautical Science core courses, and the courses required to complete one specialization to earn the Aeronautical Science degree.
Academic Programs at the Prescott Campus

Bachelor of Science Degree in Aeronautical Science

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>General Education</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aeronautical Science Core - Fixed Wing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-OR-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aeronautical Science Core - Helicopter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flight Core Courses</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fixed Wing Specialty Courses</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-OR-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Helicopter Specialty Courses</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Degree Credits</td>
</tr>
</tbody>
</table>

General Education

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA 201</td>
<td>Principles of Management</td>
<td>3</td>
</tr>
<tr>
<td>MA 111</td>
<td>College Mathematics for Aviation</td>
<td>3</td>
</tr>
<tr>
<td>MA 112</td>
<td>College Mathematics for Aviation II</td>
<td>3</td>
</tr>
<tr>
<td>PS 113</td>
<td>Introductory Physics I</td>
<td>3</td>
</tr>
<tr>
<td>PS 114</td>
<td>Introductory Physics II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td>40</td>
</tr>
</tbody>
</table>

Aeronautical Science Core Courses - Fixed Wing

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS 119</td>
<td>Private Pilot Operations</td>
<td>4</td>
</tr>
<tr>
<td>AS 122</td>
<td>Introduction to Careers in Aviation</td>
<td>2</td>
</tr>
<tr>
<td>AS 221</td>
<td>Instrument Pilot Operations</td>
<td>3</td>
</tr>
<tr>
<td>AS 246</td>
<td>Basic Air Navigation</td>
<td>3</td>
</tr>
<tr>
<td>AS 309</td>
<td>Aerodynamics</td>
<td>3</td>
</tr>
<tr>
<td>AS 310</td>
<td>Aircraft Performance</td>
<td>3</td>
</tr>
<tr>
<td>AS 311</td>
<td>Aircraft Engines-Turbine</td>
<td>3</td>
</tr>
<tr>
<td>AS 321</td>
<td>Commercial Pilot Operations</td>
<td>3</td>
</tr>
<tr>
<td>AS 350</td>
<td>Domestic and International Navigation</td>
<td>3</td>
</tr>
<tr>
<td>AS 356</td>
<td>Aircraft Systems and Components</td>
<td>3</td>
</tr>
<tr>
<td>AS 357</td>
<td>Flight Physiology</td>
<td>3</td>
</tr>
<tr>
<td>AS 387</td>
<td>Crew Resource Management</td>
<td>3</td>
</tr>
<tr>
<td>AS 408</td>
<td>Flight Safety</td>
<td>3</td>
</tr>
<tr>
<td>AS 420</td>
<td>Flight Technique Analysis</td>
<td>3</td>
</tr>
<tr>
<td>AS 472</td>
<td>Operational Applications in Aeronautical Science</td>
<td>3</td>
</tr>
<tr>
<td>WX 201</td>
<td>Survey of Meteorology</td>
<td>3</td>
</tr>
<tr>
<td>WX 301</td>
<td>Aviation Weather</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td>51</td>
</tr>
</tbody>
</table>

Aeronautical Science Core Courses - Helicopter

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS 122</td>
<td>Introduction to Careers in Aviation</td>
<td>2</td>
</tr>
<tr>
<td>AS 142</td>
<td>Private Helicopter Operations</td>
<td>3</td>
</tr>
<tr>
<td>AS 252</td>
<td>Instrument Helicopter Operations</td>
<td>3</td>
</tr>
<tr>
<td>AS 246</td>
<td>Basic Air Navigation</td>
<td>3</td>
</tr>
<tr>
<td>AS 309</td>
<td>Aerodynamics</td>
<td>3</td>
</tr>
<tr>
<td>AS 310</td>
<td>Aircraft Performance</td>
<td>3</td>
</tr>
<tr>
<td>AS 311</td>
<td>Aircraft Engines-Turbine</td>
<td>3</td>
</tr>
<tr>
<td>AS 372</td>
<td>Commercial Helicopter Operations</td>
<td>3</td>
</tr>
<tr>
<td>AS 356</td>
<td>Aircraft Systems and Components</td>
<td>3</td>
</tr>
<tr>
<td>AS 357</td>
<td>Flight Physiology</td>
<td>3</td>
</tr>
<tr>
<td>AS 387</td>
<td>Crew Resource Management</td>
<td>3</td>
</tr>
<tr>
<td>AS 388</td>
<td>Helicopter Flight Planning</td>
<td>3</td>
</tr>
<tr>
<td>AS 408</td>
<td>Flight Safety</td>
<td>3</td>
</tr>
<tr>
<td>AS 438</td>
<td>Advanced Helicopter Operations</td>
<td>3</td>
</tr>
<tr>
<td>AS 442</td>
<td>Flight Instructor Helicopter Operations</td>
<td>4</td>
</tr>
<tr>
<td>WX 201</td>
<td>Survey of Meteorology</td>
<td>3</td>
</tr>
<tr>
<td>WX 301</td>
<td>Aviation Weather</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td>51</td>
</tr>
</tbody>
</table>

Flight Core Courses

FIXED WING PROFESSIONAL PILOT TRACK

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA 119</td>
<td>Private Single Flight</td>
<td>1</td>
</tr>
<tr>
<td>FA 221</td>
<td>Instrument Single Flight</td>
<td>1</td>
</tr>
<tr>
<td>FA 321</td>
<td>Commercial Single Flight</td>
<td>1</td>
</tr>
<tr>
<td>FA 323</td>
<td>Commercial Multi-Add On</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td>4</td>
</tr>
</tbody>
</table>

HELCOPTER PROFESSIONAL PILOT TRACK

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FH 142</td>
<td>Helicopter Pilot Flight Private</td>
<td>1</td>
</tr>
<tr>
<td>FH 252</td>
<td>Helicopter Pilot Flight Instrument</td>
<td>1</td>
</tr>
<tr>
<td>FH 372</td>
<td>Helicopter Pilot Flight Commercial</td>
<td>1</td>
</tr>
<tr>
<td>FH 442</td>
<td>Helicopter Pilot Flight Instructor</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td>4</td>
</tr>
</tbody>
</table>

Airline Pilot Specialty

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS 254</td>
<td>Aviation Legislation -OR-</td>
<td></td>
</tr>
<tr>
<td>AS 405</td>
<td>Aviation Law</td>
<td>3</td>
</tr>
<tr>
<td>AS 380</td>
<td>Pilot Career Planning and Interviewing Techniques</td>
<td>1</td>
</tr>
<tr>
<td>AS 402</td>
<td>Airline Operations -OR-</td>
<td></td>
</tr>
<tr>
<td>AS 410</td>
<td>Airline Dispatch Operations</td>
<td>3</td>
</tr>
<tr>
<td>AS 411</td>
<td>Jet Transport Systems</td>
<td>3</td>
</tr>
<tr>
<td>AS 435</td>
<td>Electronic Flight Management Systems</td>
<td>3</td>
</tr>
<tr>
<td>FA 422</td>
<td>Airline Flight Crew Techniques and Procedures</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Electives</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td>25</td>
</tr>
</tbody>
</table>
Academic Programs at the Prescott Campus

Commercial Pilot Specialty

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS</td>
<td>254 Aviation Legislation</td>
<td></td>
</tr>
<tr>
<td>AS</td>
<td>405 Aviation Law</td>
<td>3</td>
</tr>
<tr>
<td>AS</td>
<td>380 Pilot Career Planning and Interviewing Techniques</td>
<td>1</td>
</tr>
<tr>
<td>BA/SIS</td>
<td>300/400 level</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Minor</td>
<td>9-18</td>
</tr>
<tr>
<td></td>
<td>Electives</td>
<td>0-9</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>25</td>
</tr>
</tbody>
</table>

Military Pilot Specialty

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS</td>
<td>435 Electronic Flight Management Systems</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ROTC</td>
<td>16-18</td>
</tr>
<tr>
<td></td>
<td>Electives</td>
<td>4-6</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>25</td>
</tr>
</tbody>
</table>

Helicopter Pilot Specialty

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS</td>
<td>254 Aviation Legislation</td>
<td></td>
</tr>
<tr>
<td>AS</td>
<td>405 Aviation Law</td>
<td>3</td>
</tr>
<tr>
<td>AS</td>
<td>378 Environmental Helicopter Operations</td>
<td>3</td>
</tr>
<tr>
<td>AS</td>
<td>380 Pilot Career Planning and Interviewing Techniques</td>
<td>1</td>
</tr>
<tr>
<td>AS</td>
<td>412 Corporate and Business Aviation</td>
<td>3</td>
</tr>
<tr>
<td>AS</td>
<td>428 FMS/Autopilots for Helicopters</td>
<td>3</td>
</tr>
<tr>
<td>BA/SF/WX</td>
<td>300-400 Level Electives</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Electives</td>
<td>6</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>25</td>
</tr>
</tbody>
</table>

Total Degree Credits: 120

Elective Flight Courses (Fixed Wing)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA</td>
<td>122 Private Multi Flight with Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>FA</td>
<td>215 Upset Training</td>
<td>1</td>
</tr>
<tr>
<td>FA</td>
<td>370 Advanced Multi-Engine Instrument Flight</td>
<td>1</td>
</tr>
<tr>
<td>FA</td>
<td>421 Flight Instructor Rating</td>
<td>1</td>
</tr>
<tr>
<td>FA</td>
<td>460 Multi-Engine Instructor Rating</td>
<td>2</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>32</td>
</tr>
</tbody>
</table>

Suggested Program of Study

Airline Pilot Specialty

The Airline Pilot Specialty is designed for students whose goal is to fly for a scheduled airline. The academic and flight courses are designed to provide exposure to procedures and operations consistent with those found at air carriers. The upper-level AS courses are very technical and provide the foundation for the capstone flight courses that are designed to be consistent with current airline transport pilot requirements.

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS</td>
<td>119 Private Pilot Operations</td>
<td>4</td>
</tr>
<tr>
<td>AS</td>
<td>122 Introduction to Careers in Aviation</td>
<td>2</td>
</tr>
<tr>
<td>AS</td>
<td>246 Basic Air Navigation</td>
<td>3</td>
</tr>
<tr>
<td>FA</td>
<td>119 Private Single Flight</td>
<td>1</td>
</tr>
<tr>
<td>MA</td>
<td>111 College Mathematics for Aviation I</td>
<td>3</td>
</tr>
<tr>
<td>MA</td>
<td>112 College Mathematics for Aviation II</td>
<td>3</td>
</tr>
<tr>
<td>PS</td>
<td>113 Introductory Physics I</td>
<td>3</td>
</tr>
<tr>
<td>PSY</td>
<td>101 Introduction to Psychology</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>31</td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS</td>
<td>221 Instrument Pilot Operations</td>
<td>3</td>
</tr>
<tr>
<td>AS</td>
<td>309 Aerodynamics</td>
<td>3</td>
</tr>
<tr>
<td>AS</td>
<td>310 Aircraft Performance</td>
<td>3</td>
</tr>
<tr>
<td>AS</td>
<td>311 Aircraft Engines-Turbine</td>
<td>3</td>
</tr>
<tr>
<td>AS</td>
<td>321 Commercial Pilot Operations</td>
<td>3</td>
</tr>
<tr>
<td>AS</td>
<td>356 Aircraft Systems and Components</td>
<td>3</td>
</tr>
<tr>
<td>FA</td>
<td>221 Instrument Single Flight</td>
<td>1</td>
</tr>
<tr>
<td>PS</td>
<td>114 Introductory Physics II</td>
<td>4</td>
</tr>
<tr>
<td>WX</td>
<td>201 Survey of Meteorology</td>
<td>3</td>
</tr>
<tr>
<td>WX</td>
<td>301 Aviation Weather</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>32</td>
</tr>
</tbody>
</table>

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS</td>
<td>254 Aviation Legislation</td>
<td></td>
</tr>
<tr>
<td>AS</td>
<td>405 Aviation Law</td>
<td>3</td>
</tr>
<tr>
<td>AS</td>
<td>350 Domestic and International Navigation</td>
<td>3</td>
</tr>
<tr>
<td>AS</td>
<td>357 Flight Physiology</td>
<td>3</td>
</tr>
<tr>
<td>AS</td>
<td>380 Pilot Career Planning and Interviewing Techniques</td>
<td>1</td>
</tr>
<tr>
<td>AS</td>
<td>387 Crew Resource Management</td>
<td>3</td>
</tr>
</tbody>
</table>
Academic Programs at the Prescott Campus

BA 201 Principles of Management 3
FA 321 Commercial Single Flight 1
FA 323 Commercial Multi Add On 1
Total Credits 30

SENIOR YEAR

Course Title Credits
AS 402 Airline Operations -OR- 3
AS 410 Airline Dispatch Operations 3
AS 408 Flight Safety 3
AS 411 Jet Transport Systems 3
AS 420 Flight Technique Analysis 3
AS 435 Electronic Flight Management Systems 3
AS 472 Operational Applications in Aeronautical Science 3
FA 422 Airline Flight Crew Techniques and Procedures 1
Electives 5
Total Credits 27

TOTAL DEGREE CREDITS 120

Commercial Pilot Specialty
The Commercial Pilot Specialty is designed for pilots with career interests requiring a more flexible degree program. The Aeronautical Science core course integrity is maintained, while allowing greater opportunity for the selection of courses to meet the needs of corporate and other segments of the aviation industry not specifically addressed by the Airline Pilot or Military Pilot specialties. One minor must be completed to meet the degree requirements of this specialization.

FRESHMAN YEAR

Course Title Credits
Communication Theory and Skills* 3
Computer Science Elective* 3
Lower-Level Humanities 3
AS 119 Private Pilot Operations 4
AS 122 Introduction to Careers in Aviation 2
AS 246 Basic Air Navigation 3
FA 119 Private Single Flight 1
MA 111 College Mathematics for Aviation I 3
MA 112 College Mathematics for Aviation II 3
PS 113 Introductory Physics I 3
PSY 101 Introductory Psychology 3
Total Credits 31

SOPHOMORE YEAR

Course Title Credits
Communication Theory and Skills* 3
AS 221 Instrument Pilot Operations 3
AS 309 Aerodynamics 3
AS 310 Aircraft Performance 3
AS 311 Aircraft Engines-Turbine 3
AS 321 Commercial Pilot Operations 3
AS 356 Aircraft Systems and Components 3
FA 221 Instrument Single Flight 1
PS 114 Introductory Physics II 4
WX 201 Survey of Meteorology 3
WX 301 Aviation Weather 3
Total Credits 32

JUNIOR YEAR

Course Title Credits
Communication Theory and Skills* 3
Lower-Level Social Sciences* 3
Minor 6
AS 254 Aviation Legislation -OR- 3
AS 405 Aviation Law 3
AS 350 Domestic and International Navigation 3
AS 357 Flight Physiology 3
AS 380 Pilot Career Planning and Interviewing Techniques 1
AS 387 Crew Resource Management 3
BA 201 Principles of Management 3
FA 321 Commercial Single Flight 1
FA 323 Commercial Multi Add On 1
Total Credits 30

SENIOR YEAR

Course Title Credits
Upper-Level HU/SS Elective* 3
AS 408 Flight Safety 3
AS 420 Flight Technique Analysis 3
AS 472 Operational Applications in Aeronautical Science 3
BA/SIS 300/400 Level 3
Minor 9
Electives 3
Total Credits 27

TOTAL DEGREE CREDITS 120

Military Pilot Specialty
The Military Pilot Specialty is designed for pilots with career interests in the military. This specialty contains the core Aeronautical Science courses and includes other courses.
optimized for a career as a pilot with the military. The Aeronautical Science degree, Military Pilot Specialty is not a part of any ROTC program at Embry-Riddle but is designed for optimum use of the credit earned in ROTC.

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS 119</td>
<td>Private Pilot Operations</td>
<td>4</td>
</tr>
<tr>
<td>AS 122</td>
<td>Introduction to Careers in Aviation</td>
<td>2</td>
</tr>
<tr>
<td>AS 246</td>
<td>Basic Air Navigation</td>
<td>3</td>
</tr>
<tr>
<td>FA 119</td>
<td>Private Single Flight</td>
<td>1</td>
</tr>
<tr>
<td>MA 111</td>
<td>College Mathematics for Aviation I</td>
<td>3</td>
</tr>
<tr>
<td>MA 112</td>
<td>College Mathematics for Aviation II</td>
<td>3</td>
</tr>
<tr>
<td>PS 113</td>
<td>Introductory Physics I</td>
<td>3</td>
</tr>
<tr>
<td>PSY 101</td>
<td>Introduction to Psychology</td>
<td>3</td>
</tr>
<tr>
<td>ROTC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Credits 28/30

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS 221</td>
<td>Instrument Pilot Operations</td>
<td>3</td>
</tr>
<tr>
<td>AS 309</td>
<td>Aerodynamics</td>
<td>3</td>
</tr>
<tr>
<td>AS 311</td>
<td>Aircraft Engines-Turbine</td>
<td>3</td>
</tr>
<tr>
<td>AS 356</td>
<td>Aircraft Systems and Components</td>
<td>3</td>
</tr>
<tr>
<td>AS 321</td>
<td>Commercial Pilot Operations</td>
<td>3</td>
</tr>
<tr>
<td>BA 201</td>
<td>Principles of Management</td>
<td>3</td>
</tr>
<tr>
<td>PS 114</td>
<td>Introductory Physics II</td>
<td>4</td>
</tr>
<tr>
<td>FA 221</td>
<td>Instrument Single Flight</td>
<td>1</td>
</tr>
<tr>
<td>ROTC</td>
<td></td>
<td>2/4</td>
</tr>
</tbody>
</table>

Total Credits 28/30

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS 310</td>
<td>Aircraft Performance</td>
<td>3</td>
</tr>
<tr>
<td>AS 350</td>
<td>Domestic and International Navigation</td>
<td>3</td>
</tr>
<tr>
<td>AS 357</td>
<td>Flight Physiology</td>
<td>3</td>
</tr>
<tr>
<td>AS 387</td>
<td>Crew Resource Management</td>
<td>3</td>
</tr>
<tr>
<td>FA 321</td>
<td>Commercial Single Flight</td>
<td>1</td>
</tr>
<tr>
<td>FA 323</td>
<td>Commercial Multi Add On</td>
<td>1</td>
</tr>
<tr>
<td>WX 201</td>
<td>Survey of Meteorology</td>
<td>3</td>
</tr>
<tr>
<td>WX 301</td>
<td>Aviation Weather</td>
<td>3</td>
</tr>
<tr>
<td>ROTC</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Total Credits 32

SENIOR YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS 309</td>
<td>Aerodynamics</td>
<td>3</td>
</tr>
<tr>
<td>AS 310</td>
<td>Aircraft Performance</td>
<td>3</td>
</tr>
<tr>
<td>AS 311</td>
<td>Aircraft Turbine Engines</td>
<td>3</td>
</tr>
<tr>
<td>AS 356</td>
<td>Aircraft Systems and Components</td>
<td>3</td>
</tr>
<tr>
<td>AS 372</td>
<td>Commercial Helicopter Operations</td>
<td>3</td>
</tr>
<tr>
<td>AS 408</td>
<td>Flight Safety</td>
<td>3</td>
</tr>
<tr>
<td>AS 420</td>
<td>Flight Technique Analysis</td>
<td>3</td>
</tr>
<tr>
<td>AS 435</td>
<td>Electronic Flight Management Systems</td>
<td>3</td>
</tr>
<tr>
<td>AS 472</td>
<td>Operational Applications in Aeronautical Science</td>
<td>3</td>
</tr>
<tr>
<td>ROTC</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Total Credits 28/30

Total Degree Credits 120

Helicopter Pilot Specialty

The Helicopter Pilot Specialty program has been developed to provide the aeronautical knowledge necessary for a student to acquire the necessary skills needed to operate in the field of helicopter aviation. The initial academic and flight courses are designed to provide the basic foundation in aerodynamics, regulations, weather, and flight planning. The upper-level Aeronautical Science courses offer managerial and critical thinking techniques needed for advanced helicopter operations. All helicopter flight activities must be completed with the approved University provider.

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS 142</td>
<td>Private Helicopter Operations</td>
<td>3</td>
</tr>
<tr>
<td>AS 122</td>
<td>Introduction to Careers in Aviation</td>
<td>2</td>
</tr>
<tr>
<td>AS 246</td>
<td>Basic Air Navigation</td>
<td>3</td>
</tr>
<tr>
<td>AS 252</td>
<td>Instrument Helicopter Operations</td>
<td>3</td>
</tr>
<tr>
<td>FH 142</td>
<td>Helicopter Pilot Flight Private</td>
<td>1</td>
</tr>
<tr>
<td>FH 252</td>
<td>Helicopter Pilot Flight Instrument</td>
<td>1</td>
</tr>
<tr>
<td>MA 111</td>
<td>College Mathematics for Aviation I</td>
<td>3</td>
</tr>
<tr>
<td>MA 112</td>
<td>College Mathematics for Aviation II</td>
<td>3</td>
</tr>
<tr>
<td>PS 113</td>
<td>Introductory Physics I</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits 31

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS 309</td>
<td>Aerodynamics</td>
<td>3</td>
</tr>
<tr>
<td>AS 310</td>
<td>Aircraft Performance</td>
<td>3</td>
</tr>
<tr>
<td>AS 311</td>
<td>Aircraft Turbine Engines</td>
<td>3</td>
</tr>
<tr>
<td>AS 356</td>
<td>Aircraft Systems and Components</td>
<td>3</td>
</tr>
<tr>
<td>AS 372</td>
<td>Commercial Helicopter Operations</td>
<td>3</td>
</tr>
</tbody>
</table>
Academic Programs at the Prescott Campus

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS 442</td>
<td>Flight Instructor Helicopter Operations</td>
<td>4</td>
</tr>
<tr>
<td>FH 372</td>
<td>Helicopter Pilot Flight Commercial</td>
<td>1</td>
</tr>
<tr>
<td>PS 114</td>
<td>Introductory Physics II</td>
<td>4</td>
</tr>
<tr>
<td>WX 201</td>
<td>Survey of Meteorology</td>
<td>3</td>
</tr>
<tr>
<td>WX 301</td>
<td>Aviation Weather</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td>33</td>
</tr>
</tbody>
</table>

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Communication Theory and Skills*</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Lower-Level Social Sciences*</td>
<td>3</td>
</tr>
<tr>
<td>PSY 101</td>
<td>Introduction to Psychology</td>
<td>3</td>
</tr>
<tr>
<td>BA 201</td>
<td>Principles of Management</td>
<td>3</td>
</tr>
<tr>
<td>AS 254</td>
<td>Aviation Legislation -OR-</td>
<td></td>
</tr>
<tr>
<td>AS 405</td>
<td>Aviation Law</td>
<td>3</td>
</tr>
<tr>
<td>AS 357</td>
<td>Flight Physiology</td>
<td>3</td>
</tr>
<tr>
<td>AS 378</td>
<td>Environmental Helicopter Operations</td>
<td>3</td>
</tr>
<tr>
<td>AS 380</td>
<td>Pilot Career Planning and Interviewing Techniques</td>
<td>1</td>
</tr>
<tr>
<td>AS 387</td>
<td>Crew Resource Management</td>
<td>3</td>
</tr>
<tr>
<td>AS 388</td>
<td>Helicopter Flight Planning</td>
<td>3</td>
</tr>
<tr>
<td>FH 442</td>
<td>Helicopter Pilot Flight Instructor</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td>29</td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Upper-Level HU/SS Elective*</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Upper-Level BA/SF/WX Elective</td>
<td>6</td>
</tr>
<tr>
<td>AS 408</td>
<td>Flight Safety</td>
<td>3</td>
</tr>
<tr>
<td>AS 412</td>
<td>Corporate and Business Aviation</td>
<td>3</td>
</tr>
<tr>
<td>AS 428</td>
<td>FMS/Autopilots for Helicopters</td>
<td>3</td>
</tr>
<tr>
<td>AS 438</td>
<td>Advanced Helicopter Operations</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td>27</td>
</tr>
</tbody>
</table>

TOTAL DEGREE CREDITS

120

Aeronautical Science Notes

Embry-Riddle courses in the general education categories of Communication Theory and Skills, Computer Science, Humanities, Social Sciences, and Management may be chosen from those listed below, assuming prerequisite requirements are met. Courses from other institutions are acceptable if they fall into these broad categories and are at the level specified in the Aeronautical Science vertical outline.

Communication Theory and Skills

COM 122, 219, and 221 or 222

Computer Science

FT 109 or CS 118

Humanities

LOWERVER-LEVEL:

HU 140, 141, 142, 143, 144, 145, 146

UPPER-LEVEL:

HU 300-400 level

Social Sciences

LOWERVER-LEVEL:

PSY 101, EC 210 or EC 211, SS 110, 120, 130, 204,210

(Military Pilot Specialty must take PSY 101 and SS 110, 120, or 130.)

UPPER-LEVEL:

SS 300-400 level or PSY 350

Flight education is a continuous process that normally begins sometime during the student’s first year of attendance and will progress until culminating in a multi-engine commercial certificate with an instrument rating. The curriculum is designed to allow students to meet core objectives in a reasonable amount of time.

Various factors influence student progress. These factors include student academic preparation, student availability, student determination and dedication, the availability of aircraft and instructor pilots, and the cooperation of the weather. Consequently, some students will finish before others. After completing the core curriculum, students may take an additional semester or more to acquire additional advanced certificate and ratings, including those for single-engine commercial, certified flight instructor airplane and instrument, and/or they may enroll in the Airline Flight Crew Simulation course.

After matriculating, all remaining FAA courses required for the Aeronautical Science degree must be completed at Embry-Riddle or at another AABI-accredited college/university. Students who have begun training on an FAA certificate course prior to enrolling at Embry-Riddle may obtain written permission to complete that ONE course outside Embry-Riddle.

Courses for all other FAA certificates required for the Aeronautical Science degree must be completed at Embry-Riddle or at another AABI-accredited college or university.
All students enrolled in the Aeronautical Science degree program must complete at least one flight course successfully at Embry-Riddle. All Embry-Riddle students must obtain written permission in advance for any flight training outside Embry-Riddle.

See the Flight Department chair to obtain an Off Campus Flight Authorization Request form. All details regarding course and credit requirements and the approval process will be provided upon application. Students who have acquired FAA pilot certificates prior to enrolling at Embry-Riddle will receive credit for the appropriate courses and will be placed in the next sequential course in the degree program. See the Flight Department chair concerning exact credit.

Enrollment in flight courses requires proof of U.S. citizenship or a Department of Justice background check for international students. Please see the Aviation Transportation and Security Act under the Admissions section of this catalog.

Aircraft Dispatcher Certification Program

For the student interested in airline flight operations management, Embry-Riddle offers a program to prepare the student for Aircraft Dispatcher certification testing. Upon successful completion of the required curriculum and the FAA Dispatcher Written Examination, the student will be eligible to take the FAA Dispatcher Practical Test with instructor authorization.

Certificated aircraft dispatchers are employed by airlines to manage the ground-based tasks vital to successful airline operations. Dispatchers share responsibility with the captain for preflight planning and preparation of the dispatch release, monitoring the progress of the flight, issuing safety-of-flight information to the crew, and canceling or re-dispatching the flight.

To carry out these tasks properly, dispatchers must be knowledgeable in aircraft performance capabilities, meteorology, operating regulations, air traffic control, and instrument flight procedures. They must also exhibit strong aeronautical decision-making skills incorporating the priorities of safety, passenger comfort, and economic considerations.

Certification Requirements

The Aircraft Dispatcher Certification program is available at the Prescott Campus. Dispatcher preparation is based on the successful completion of the following courses and the applicable prerequisites.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS 221</td>
<td>Instrument Pilot Operations</td>
<td>. . . . 3</td>
</tr>
<tr>
<td>AS 310</td>
<td>Aircraft Performance</td>
<td>. . . . 3</td>
</tr>
<tr>
<td>AS 350</td>
<td>Domestic and International Navigation</td>
<td>. . . . 3</td>
</tr>
<tr>
<td>AS 410</td>
<td>Airline Dispatch Operations*</td>
<td>. . . . 3</td>
</tr>
<tr>
<td>AT 200</td>
<td>Air Traffic Management I</td>
<td>. . . . 3</td>
</tr>
<tr>
<td>WX 201</td>
<td>Survey of Meteorology</td>
<td>. . . . 3</td>
</tr>
<tr>
<td>WX 301</td>
<td>Aviation Weather</td>
<td>. . . . 3</td>
</tr>
</tbody>
</table>

Total Credits 21

* AS 410 serves as the capstone course for the Aircraft Dispatcher program.

Embry-Riddle occasionally changes a course number designator or nomenclature without materially affecting course content. In these cases, the program evaluator will substitute the equivalent course for those above.

For those students who possess a Private or Commercial Pilot Certificate with Instrument Rating, this training and experience may be used as equivalent for AS 221, AT 200, or both, and constitutes a minimum of 70 hours of experience.

This program is offered within the academic programs at ERAU and not as separate training. Qualification for FAA testing normally requires a minimum of six semesters of instruction. To complete the Aircraft Dispatcher Certification program, the student must earn a “C” grade or higher in all
required courses. For more information, contact the Dispatch Program Manager in the Aeronautical Science Department.

Pilot Advancement Certification Program

For those individuals already possessing a bachelor’s degree who are interested in furthering their flight training beyond the Private Pilot level, Embry-Riddle offers a certificate program designed to deliver advanced levels of flight certification. The courses associated with this program are tailored to meet individual needs that build upon previously garnered flight experiences (e.g., military, FBO, etc.). This certificate program does not require enrollment as a full-time degree seeking student. The students enrolled in this program attend aeronautical science academic courses and train in the same flight courses as our regular four year degree students. At the successful completion of this program, the student attains, as a minimum, an FAA Commercial Pilot Certificate with an Airplane Single-Engine and/or Multi-Engine Land rating(s). Further pilot advancement training is available based on individual student needs. Advanced flight training and/or FAA certification includes upset training, hypoxia training, spatial disorientation training, flight instructor certificate, instrument flight instructor certificate, multi-engine flight instructor certificate, and training as a flight crewmember in a jet transport aircraft.

The training acquired in this program will advance the student’s knowledge and ability to serve as a professional pilot.

Enrollment in flight courses requires proof of U.S. citizenship or a Department of Justice background check for international students. Please see the Aviation Transportation and Security Act under the Admissions section of this catalog.

Certification Requirements

The Pilot Advancement Certificate results in certification as a commercial pilot with multi-engine and instrument ratings. Graduation from the program is based on the successful completion of the following Aeronautical Science ground and flight course sequence:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS 109</td>
<td>Flight Transition Ground Course</td>
<td>2</td>
</tr>
<tr>
<td>AS 221</td>
<td>Instrument Pilot Operations</td>
<td>3</td>
</tr>
<tr>
<td>AS 321</td>
<td>Commercial Pilot Operations</td>
<td>3</td>
</tr>
<tr>
<td>FA 109</td>
<td>Intermediate Flight Transition and Procedural Familiarization</td>
<td>1</td>
</tr>
<tr>
<td>FA 221</td>
<td>Instrument Single Flight</td>
<td>1</td>
</tr>
<tr>
<td>FA 321</td>
<td>Commercial Single Flight</td>
<td>1</td>
</tr>
<tr>
<td>FA 323</td>
<td>Commercial Multi Add On</td>
<td>1</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

Students wanting to enter the Pilot Advancement Certificate Program that do not have a private pilot certificate must enroll as a regular degree seeking student in AS 119 and FA 119.

Note: 12 credit hours are the minimum number of hours required for certification completion.

Advanced Flight Training Track

This supplemental track is designed for students with appreciable flight training and/or flight experience to afford them with opportunities to advance as a professional pilot. Completion of the Professional Pilot Flight Track or equivalent experience is required to enter the Advanced Flight Training Track.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA 215</td>
<td>Upset Training with Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>FA 370</td>
<td>Advanced Multi-Engine Instrument Flight</td>
<td>1</td>
</tr>
<tr>
<td>FA 418</td>
<td>Airline Transport Pilot Proficiency Development</td>
<td>1</td>
</tr>
<tr>
<td>AS 421</td>
<td>Flight Instructor Ground School</td>
<td>4</td>
</tr>
<tr>
<td>FA 421</td>
<td>Flight Instructor Rating</td>
<td>1</td>
</tr>
<tr>
<td>FA 422</td>
<td>Airline Flight Crew Techniques and Procedures</td>
<td>1</td>
</tr>
<tr>
<td>FA 460</td>
<td>Multi-Engine Flight Instructor Rating</td>
<td>2</td>
</tr>
<tr>
<td>FA 199-499</td>
<td>Special Topics in Flight</td>
<td>0-2</td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AS 199-399</td>
<td>Special Topics in Aeronautical Science</td>
<td>1-3</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>11/14</td>
</tr>
</tbody>
</table>
Airline Transport Pilot Certification Program

For those individuals already possessing a bachelor’s degree and a Commercial Pilot Certificate with an Airplane Multi-engine Land rating, Embry-Riddle offers a certificate program designed to deliver advanced levels of flight certification. The courses associated with this program are tailored to meet individual needs that build upon previously garnered flight experiences (e.g. military, FBO, etc.). This certificate program does not require enrollment as a full-time degree seeking student. At the successful completion of this program, the student attains an FAA Airline Transport Pilot Certificate with an Airplane Multi-engine Land rating. Further pilot advancement training is available based on individual student needs. Optional advanced flight training and/or FAA certification includes upset training, flight instructor certificate, instrument flight instructor certificate, multi-engine flight instructor certificate, and training as a flight crewmember in a jet transport aircraft.

The training acquired in this program will advance the student’s knowledge and ability to serve as a professional pilot.

Certification Requirements

Graduation from the program is based on the successful completion of the following course:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA 418</td>
<td>Airline Transport Pilot Proficiency</td>
<td>. .</td>
</tr>
</tbody>
</table>

Total Credits 1

Note: 1 credit hour is the minimum number of hours required for certification completion.

Optional Advanced Flight Training

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA 370</td>
<td>Advanced Multi-Engine Instrument Flight</td>
<td>. .</td>
</tr>
<tr>
<td>AS 421</td>
<td>Flight Instructor Ground Course</td>
<td>. .</td>
</tr>
<tr>
<td>FA 421</td>
<td>Flight Instructor Rating</td>
<td>. .</td>
</tr>
<tr>
<td>FA 215</td>
<td>Upset Training</td>
<td>. .</td>
</tr>
<tr>
<td>FA 460</td>
<td>Multi-Engine Flight Instructor Rating</td>
<td>. .</td>
</tr>
<tr>
<td>FA 199-499</td>
<td>Special Topics in Flight</td>
<td>. .</td>
</tr>
<tr>
<td>AS 199-399</td>
<td>Special Topics in Aeronautical Science</td>
<td>. .</td>
</tr>
</tbody>
</table>

0-2

1-3
Academic Programs at the Prescott Campus

Aeronautics
Bachelor of Science

The Aeronautics degree is designed specifically for students who work, have worked, or desire to work in aviation-related careers. For students with existing aviation-related knowledge and skills, this degree acknowledges a student’s valuable acquired experience through the award of advanced standing prior-learning credit. The curriculum then builds on those skills and knowledge. The program also provides an opportunity for students new to aviation to acquire aviation-specific knowledge through aviation-related coursework. This combination of a student’s aviation learning, aviation courses, courses in business, computer science, economics, humanities, communications, social sciences, mathematics, and physical sciences, along with professional development elective courses and a minor course of study, will prepare graduates for a career in an aviation-related field.

Degree Requirements

The Bachelor of Science degree in Aeronautics requires successful completion of a minimum of 120 semester hours, normally completed in eight semesters. A minimum of 40 semester hours must be upper-level. Students are required to complete MA 111 and MA 112. Those without the mathematics proficiency needed to begin MA 111, will be enrolled in MA 106 for their initial mathematics course.

Aviation Area of Concentration

The Aviation Area of Concentration is the degree component where students can select courses from various aviation-related fields. In addition, the AOC portion of the degree is where credit for prior aviation learning is applied. Thirty-six hours of credit are needed to satisfy the requirements of this portion of the Aeronautics degree. All or part of the credit needed for this degree requirement may be awarded based on prior aviation training or experience. To complete the AOC, in addition to any prior learning credit, students may select from courses in Aeronautical Science, Flight, Air Traffic Management, Safety (aviation-related), or Applied Meteorology (aviation-related).

Evidence of Prior Aviation Learning

Applicants who qualify for admission to and matriculate in the degree program may be eligible for credit for prior learning. Applicants must be able to prove competence in an aviation occupation with authentic documentary evidence. Training and experience in closely related occupations can be combined.

Just as official transcripts are required to transfer credit from one university to another, original or authenticated documentation of prior learning from professional training and experience must be presented to qualify for Aviation Area of Concentration credit. Documentary evidence must be from objective third-party sources and clearly describe the applicant’s professional training, duties, and achievements in detail. Advanced standing credit will be awarded in accordance with the applicable Embry-Riddle Curriculum Manual.

Duplicate Credit
Academic Programs at the Prescott Campus

Many Embry-Riddle courses are designed to teach the same skills and knowledge that Aeronautics students have acquired through experience and training. Students who complete courses in the same aviation specialty for which they were granted Aviation Area of Concentration credit would be duplicating coverage of the same subject matter. Credit for completion of such courses will not be applied to degree requirements.

Credit for prior learning granted in the Aeronautics degree program is not transferable to any other Embry-Riddle degree program.

Minor
Students must select and complete one minor field of study. Total credits within the minor will vary depending on which minor is chosen. Students typically select a minor that will enhance their aviation career. Courses required for the minor field of study may be used to fill Area of Concentration, Professional Development, or Open Elective degree requirements. See Minor Courses of Study in this catalog.

Bachelor of Science in Aeronautics
The curriculum to be followed by each student will vary depending on any AOC prior learning or transfer credits granted.

Aviation Area of Concentration (36)
Advanced standing credit and/or nonduplicating credit from AEL/AMT/AS/AT/FA/FH/SF/SP/WX courses.

General Education
<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM</td>
<td>Communication Theory and Skills*</td>
</tr>
<tr>
<td>HU</td>
<td>Lower-Level Humanities Elective</td>
</tr>
<tr>
<td>SS</td>
<td>Lower-Level Social Sciences Elective</td>
</tr>
<tr>
<td>HU/SS</td>
<td>Upper-Level HU or SS Elective</td>
</tr>
<tr>
<td>CS</td>
<td>Computer Science Elective</td>
</tr>
<tr>
<td>MA 140</td>
<td>College Algebra (or higher-level math)</td>
</tr>
<tr>
<td>MA 112</td>
<td>College Mathematics for Aviation II</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA 222</td>
<td>Business Statistics</td>
</tr>
<tr>
<td>OR-</td>
<td></td>
</tr>
<tr>
<td>MA</td>
<td>Upper-Level Mathematics</td>
</tr>
<tr>
<td>OR-</td>
<td></td>
</tr>
<tr>
<td>PS</td>
<td>Physical and Life Sciences Elective</td>
</tr>
</tbody>
</table>

(One course must include a laboratory)

Program Support (12)
<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS 254</td>
<td>Aviation Legislation</td>
</tr>
<tr>
<td>AS 405</td>
<td>Aviation Law</td>
</tr>
<tr>
<td>BA 201</td>
<td>Principles of Management</td>
</tr>
<tr>
<td>OR-</td>
<td></td>
</tr>
<tr>
<td>BA 210</td>
<td>Financial Accounting</td>
</tr>
<tr>
<td>EC 210</td>
<td>Microeconomics</td>
</tr>
<tr>
<td>OR-</td>
<td></td>
</tr>
<tr>
<td>EC 211</td>
<td>Macroeconomics</td>
</tr>
</tbody>
</table>

Professional Development Electives (21)
Select from upper-division (300-400) courses in AEL/AMS/AS/AT/BA/CS/EC/IT/SF/SIS/WX.

Open Electives 15

TOTAL DEGREE CREDITS 120

*Embry-Riddle courses in the general education categories of Communication Theory and Skills, Humanities, and Social Sciences may be chosen from those listed below, assuming prerequisite requirements are met. Courses from other institutions are acceptable if they fall into these broad categories and are at the level specified in the Aeronautics vertical outline. Other courses may also be used with permission of the undergraduate program coordinator.

Communication Theory and Skills
COM 122, 219, 221 or 222

Humanities
HU 140 to HU 146

Social Sciences
LOWER-LEVEL:
100-200 level

UPPER-LEVEL:
300-400 level, PSY 350

Dependent on the amount of upper-level Aviation Area of Concentration credit applied, some of the open or Communications/Humanities/Social Sciences electives in the B.S. degree may have to be 300-400 level courses to satisfy the graduation requirement of 40 credits of upper-level courses.

Cooperative Education credits may be used as open electives; however, assignments may not be in the student’s occupational specialty.

Students need to ascertain Mathematics and Physical Sciences pre/corequisites that are required for other courses. For example, PS 113/4 and MA 112 are required for many upper-division AS and WX courses.
Academic Programs at the Prescott Campus

Air Traffic Management

Bachelor of Science

The Air Traffic Management (ATM) program is a degree designed for students whose goal is to become an air traffic controller or seek employment in a related industry. In addition to ATM courses, the curriculum provides skills in mathematics, physics, communications, safety, meteorology and aeronautics. The academic courses are designed to provide exposure to procedures and operations consistent with those found in Federal Aviation Administration (FAA) air traffic control facilities.

Degree Requirements

The Bachelor of Science degree in Air Traffic Management requires successful completion of a minimum of 120 semester hours, normally completed in eight semesters. A minimum of 40 semester hours must be upper-level. Students are required to complete MA 111 and MA 112. Those without the mathematics proficiency needed to begin MA 111, will be enrolled in MA 106 for their initial mathematics course.

Minor

Students must select and complete one minor field of study, as approved by the Aeronautical Science Department. Total credits within the minor will vary depending on which minor is chosen. Students typically select a minor that will enhance their aviation career. See Minor Courses of Study in this catalog.

Suggested Program of Study

Students should be aware that several courses in each academic year might have prerequisites and/or corequisites. Please check the course descriptions in this catalog before registering for classes to ensure requisite sequencing.

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Communication Theory and Skills</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Humanities 140 - 146 series</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Physical Science</td>
<td>3</td>
</tr>
<tr>
<td>AS 119</td>
<td>Private Pilot Operations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-OR-</td>
<td></td>
</tr>
<tr>
<td>AS 120</td>
<td>Principles of Aeronautical Science</td>
<td>4/3</td>
</tr>
<tr>
<td>AT 200</td>
<td>Air Traffic Management I</td>
<td>3</td>
</tr>
<tr>
<td>IT 109</td>
<td>Introduction to Computers and Applications</td>
<td></td>
</tr>
<tr>
<td>MA 111</td>
<td>College Mathematics for Aviation I</td>
<td>3</td>
</tr>
<tr>
<td>MA 112</td>
<td>College Mathematics for Aviation II</td>
<td>3</td>
</tr>
<tr>
<td>PSY 101</td>
<td>Introduction to Psychology</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Lower/Upper-Level HU/SS/MA/PS/COM/BA Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td>30/31</td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Communication Theory and Skills</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Lower-Level Humanities</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Physical Science with Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>AT 302</td>
<td>Air Traffic Management II</td>
<td>3</td>
</tr>
<tr>
<td>AT 305</td>
<td>Air Traffic Management III</td>
<td>3</td>
</tr>
<tr>
<td>BA 201</td>
<td>Principles of Management</td>
<td>3</td>
</tr>
<tr>
<td>EC 210</td>
<td>Microeconomics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-OR-</td>
<td></td>
</tr>
<tr>
<td>EC 211</td>
<td>Macroeconomics</td>
<td>3</td>
</tr>
<tr>
<td>SF 201</td>
<td>Introduction to Health, Occupational Safety, and Transportation -OR-</td>
<td></td>
</tr>
<tr>
<td>SF 210</td>
<td>Introduction to Aerospace Safety</td>
<td>3</td>
</tr>
<tr>
<td>WX 201</td>
<td>Survey of Meteorology</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Minor Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td>31</td>
</tr>
</tbody>
</table>
Academic Programs at the Prescott Campus

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT 315</td>
<td>Air Traffic Management-VFR Tower</td>
<td>. . . . 3</td>
</tr>
<tr>
<td>AT 401</td>
<td>Air Traffic Management IV</td>
<td>. . . . 3</td>
</tr>
<tr>
<td>BA 319</td>
<td>Managerial and Organizational Behavior</td>
<td>3</td>
</tr>
<tr>
<td>SF 320</td>
<td>Human Factors in Aviation Safety</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-OR-</td>
<td></td>
</tr>
<tr>
<td>AS 387</td>
<td>Crew Resource Management</td>
<td>3</td>
</tr>
<tr>
<td>WX 301</td>
<td>Aviation Weather</td>
<td>. . . . 3</td>
</tr>
<tr>
<td></td>
<td>Upper-Level HU/SS Elective</td>
<td>. . . . 3</td>
</tr>
<tr>
<td></td>
<td>Upper-Level Open Elective</td>
<td>. . . . 3</td>
</tr>
<tr>
<td></td>
<td>Minor Elective</td>
<td>. . . . 6</td>
</tr>
</tbody>
</table>

Total Credits 30

SENIOR YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT 405</td>
<td>Air Traffic Management V</td>
<td>. . . . 3</td>
</tr>
<tr>
<td>AT 406</td>
<td>Air Traffic Management VI</td>
<td>. . . . 3</td>
</tr>
<tr>
<td>SF 462</td>
<td>Health, Safety, and Aviation Law</td>
<td>. . . . 3</td>
</tr>
<tr>
<td></td>
<td>Minor</td>
<td>. . . . 6</td>
</tr>
<tr>
<td></td>
<td>Upper-Level Open Elective</td>
<td>. . . . 3</td>
</tr>
<tr>
<td></td>
<td>Open Electives**</td>
<td>. . . . 10/11</td>
</tr>
</tbody>
</table>

Total Credits 28/29

Total Degree Credits 120

*Embry-Riddle courses in the general education categories of Communication Theory and Skills, Computer Science, Humanities, Social Sciences, Mathematics, and Physical Science may be chosen from those listed below, assuming prerequisite requirements are met. Courses from other institutions are acceptable if they fall into these broad categories and are at the level specified in the Air Traffic Management vertical outline.

Communication Theory and Skills:

- COM: 122, 219, 221 or 222

Humanities or Social Sciences:

- Lower-Level: Any 100-200 level
- Upper-Level: Any 300-400 level

Physical Science:

- PS: 101, 102, 113, 114, 105, 107, 140

Mathematics

- MA: 140, 142, 145, 241

Open Elective credits required will be calculated, based upon selection of the minor, to complete the minimum of 120 credits requirement for the degree. A student MUST ALSO complete a minimum of 40 credit hours of upper-level courses. Open elective courses can count toward this total.

Students enrolled in the Army, or Air Force ROTC programs may substitute MSL or AF courses for open elective courses.

Air traffic controllers are required to possess a current FAA 2nd Class or higher medical certificate to receive and exercise the privileges of their FAA Air Traffic Controller certificates. Students should verify their eligibility status for this level medical certificate with an FAA designated medical examiner prior to enrolling in this degree program. The medical certificate is not required for ATM courses or degree enrollment. Prospective air traffic controllers must be able to complete their university education and have entered the FAA Air Traffic Control Academy prior to reaching their 31st birthday.

FAA air traffic controllers must be U.S. citizens.
Academic Programs at the Prescott Campus

Applied Meteorology
Bachelor of Science

The Bachelor of Science degree in Applied Meteorology provides a practical understanding of the physics and dynamics of the atmosphere and prepares the graduate for a range of meteorologist positions in government or industry. Students use a state-of-the-art Weather Center and computer-equipped classrooms to understand and forecast complex atmospheric phenomena ranging from severe thunderstorms and tornadoes, to cyclones, fronts, and jet streams, to global climate and how it is changing. Emphasis is placed on applying theory to operational weather forecasting and decision making for weather-sensitive industries, including possible hands-on experience as a meteorology intern. The program prepares graduating students for careers as meteorologists with the government, military, television, or the private sector, as dispatchers or for graduate studies toward a career in research or academia. All areas of concentration meet all the requirements for undergraduate study in meteorology recommended by the American Meteorological Society, the National Weather Service, and the U.S. Air Force. All graduates also meet U.S. Office of Personnel Management Qualification Standards for the position of meteorologist.

Degree Requirements

The Bachelor of Science degree in Applied Meteorology requires successful completion of a minimum of 120 credit hours and can be attained in eight semesters, as outlined below. Students must complete both general education courses and Applied Meteorology courses in order to graduate with a Bachelor of Science in Applied Meteorology. All students entering the Applied Meteorology program should have completed four years of high school science and mathematics. Proficiency in trigonometry and pre-calculus is essential to enter this program. Students should be prepared to enter Calculus I in their first semester.

Students should be aware that several courses in each academic year may have pre-or corequisites. Check the course descriptions at the back of this catalog before registering for classes to ensure that these requirements are met. In particular, many courses have math prerequisites or corequisites. Students should plan to begin the required math-calculus sequence as soon as they are eligible. Notice that students completing the Research AOC will be eligible to declare a Minor in Mathematics. Others may add MA 441 or a similar upper-level math class to become eligible for the math minor.

In addition, most meteorology (WX) courses are offered only once a year. These are indicated in the schedules below. Failure to adhere to the separate Fall and Spring plans will result in graduation being delayed by one year.

There are four areas of concentration. The Research Area of Concentration is for non-flying, non-military students. The Meteorology with Flying area of concentration is for non-military students who wish to complete 14 credit hours of airplane (or helicopter) flying and ground schools while earning the Applied Meteorology degree. The Military Meteorologist area of concentration is for the ROTC student. The Meteorology for Aviation
Operations Area of Concentration will train students for jobs as flight dispatchers. This area of concentration requires an additional 25 credit hours of classes, most of which can be satisfied using open elective slots. The area of concentration must be declared at the time of enrollment or during the first semester.

The courses necessary to earn the degree are listed below.

Note: Many meteorology courses are only offered once per academic year.

Areas of Concentration (AOC)

Research AOC

Suggested Program of Study

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC/SS</td>
<td>Lower-Level Economics -OR- Social Sciences</td>
<td>3</td>
</tr>
<tr>
<td>COM122</td>
<td>English Composition and Literature</td>
<td>3</td>
</tr>
<tr>
<td>COM219</td>
<td>Speech</td>
<td>3</td>
</tr>
<tr>
<td>HU 14X</td>
<td>Lower-Level Humanities</td>
<td>3</td>
</tr>
<tr>
<td>MA 241</td>
<td>Calculus and Analytical Geometry I</td>
<td>4</td>
</tr>
<tr>
<td>MA 242</td>
<td>Calculus and Analytical Geometry II</td>
<td>4</td>
</tr>
<tr>
<td>PS 150</td>
<td>Physics I for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>UNIV 101 College Success Seminar*</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>WX 252</td>
<td>Introduction to Meteorology</td>
<td>3</td>
</tr>
<tr>
<td>WX 353</td>
<td>Thermodynamics of the Atmosphere**</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits 30

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 125</td>
<td>Computer Science I</td>
<td>4</td>
</tr>
<tr>
<td>EGR 115</td>
<td>Introduction to Computing for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>MA 243</td>
<td>Calculus and Analytical Geometry III</td>
<td>4</td>
</tr>
<tr>
<td>PS 105</td>
<td>General Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>PS 105L</td>
<td>General Chemistry I Laboratory</td>
<td>0</td>
</tr>
<tr>
<td>PS 160</td>
<td>Physics II for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>PS 216</td>
<td>Physics I Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>WX 220</td>
<td>Data Analysis and Visualization**</td>
<td>3</td>
</tr>
<tr>
<td>WX 261</td>
<td>Applied Climatology</td>
<td>3</td>
</tr>
<tr>
<td>WX 354</td>
<td>Dynamics of the Atmosphere**</td>
<td>3</td>
</tr>
<tr>
<td>WX 363</td>
<td>Thunderstorms</td>
<td>3</td>
</tr>
<tr>
<td>WX 365</td>
<td>Satellite and Radar Weather Interpretation**</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits 30/31

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FALL</td>
<td>COM 221 Technical Report Writing</td>
<td>3</td>
</tr>
<tr>
<td>MA 345</td>
<td>Differential Equations and Matrix Methods</td>
<td>4</td>
</tr>
<tr>
<td>MA 412</td>
<td>Probability and Statistics -OR-</td>
<td></td>
</tr>
<tr>
<td>MA 404</td>
<td>Statistics and Research Methods</td>
<td>3</td>
</tr>
<tr>
<td>WX 270</td>
<td>Weather Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>WX 420</td>
<td>Advanced Atmospheric Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>SPRING</td>
<td>EC/SS Lower-Level Economics -OR- Social Sciences</td>
<td>3</td>
</tr>
<tr>
<td>MA 441</td>
<td>Advanced Engineering Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>WX 355</td>
<td>Weather Analysis</td>
<td>5</td>
</tr>
<tr>
<td>WX 390</td>
<td>Atmospheric Physics</td>
<td>3</td>
</tr>
<tr>
<td>SUMMER</td>
<td>CE AAS Co-op/Internship -OR- Fall/Spring Open Electives</td>
<td>6</td>
</tr>
</tbody>
</table>

Total Credits 30/36

SENIOR YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FALL</td>
<td>WX 427 Forecasting Techniques</td>
<td>3</td>
</tr>
<tr>
<td>WX 490</td>
<td>Advanced Dynamic Meteorology I</td>
<td>3</td>
</tr>
<tr>
<td>SPRING</td>
<td>HU/SS Upper-Level Humanities -OR- Social Sciences</td>
<td>3</td>
</tr>
<tr>
<td>WX 457</td>
<td>Weather Operations Seminar</td>
<td>3</td>
</tr>
<tr>
<td>WX 491</td>
<td>Advanced Dynamic Meteorology II</td>
<td>3</td>
</tr>
<tr>
<td>Open electives</td>
<td>8/15</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits 23/30

TOTAL DEGREE CREDITS 120

Applied Meteorology With Flying AOC

Suggested Program of Study

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS 119</td>
<td>Private Pilot Operations</td>
<td>4</td>
</tr>
<tr>
<td>COM122</td>
<td>English Composition and Literature</td>
<td>3</td>
</tr>
<tr>
<td>CS 125</td>
<td>Computer Science I -OR-</td>
<td></td>
</tr>
<tr>
<td>EGR 115</td>
<td>Introduction to Computing for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>FA 119</td>
<td>Private Single Flight</td>
<td>1</td>
</tr>
<tr>
<td>MA 241</td>
<td>Calculus and Analytical Geometry I</td>
<td>4</td>
</tr>
</tbody>
</table>
Academic Programs at the Prescott Campus

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA</td>
<td>242</td>
<td>Calculus and Analytical Geometry II</td>
</tr>
<tr>
<td>PS</td>
<td>150</td>
<td>Physics I for Engineers</td>
</tr>
<tr>
<td>UNIV 101</td>
<td>College Success Seminar*</td>
<td>(1)</td>
</tr>
<tr>
<td>WX</td>
<td>252</td>
<td>Introduction to Meteorology**</td>
</tr>
<tr>
<td>WX</td>
<td>353</td>
<td>Thermodynamics of the Atmosphere**</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>29/30</td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS</td>
<td>221</td>
<td>Instrument Pilot Operations</td>
</tr>
<tr>
<td>COM219</td>
<td>Speech</td>
<td></td>
</tr>
<tr>
<td>FA</td>
<td>221</td>
<td>Instrument Single Flight</td>
</tr>
<tr>
<td>HU</td>
<td>14X</td>
<td>Lower-Level Humanities</td>
</tr>
<tr>
<td>MA</td>
<td>243</td>
<td>Calculus and Analytical Geometry III</td>
</tr>
<tr>
<td>PS</td>
<td>160</td>
<td>Physics II for Engineers</td>
</tr>
<tr>
<td>PS</td>
<td>216</td>
<td>Physics I Laboratory</td>
</tr>
<tr>
<td>WX</td>
<td>220</td>
<td>Data Analysis and Visualization**</td>
</tr>
<tr>
<td>WX</td>
<td>261</td>
<td>Applied Climatology</td>
</tr>
<tr>
<td>WX</td>
<td>354</td>
<td>Dynamics of the Atmosphere**</td>
</tr>
<tr>
<td>WX</td>
<td>363</td>
<td>Thunderstorms</td>
</tr>
<tr>
<td>WX</td>
<td>365</td>
<td>Satellite and Radar Weather</td>
</tr>
<tr>
<td></td>
<td>Interpretation**</td>
<td></td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>33</td>
</tr>
</tbody>
</table>

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FALL</td>
<td>AS</td>
<td>321 Commercial Pilot Operations</td>
</tr>
<tr>
<td></td>
<td>COM219</td>
<td>Technical Report Writing</td>
</tr>
<tr>
<td></td>
<td>FA</td>
<td>321 Commercial-Single Flight</td>
</tr>
<tr>
<td></td>
<td>MA</td>
<td>345 Differential Equations and Matrix Methods</td>
</tr>
<tr>
<td></td>
<td>WX</td>
<td>270 Weather Information Systems</td>
</tr>
<tr>
<td></td>
<td>WX</td>
<td>420 Advanced Atmospheric Thermodynamics</td>
</tr>
<tr>
<td>SOUTH</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FA</td>
<td>323 Commercial-Multi Ad-on</td>
</tr>
<tr>
<td></td>
<td>MA</td>
<td>222 Business Statistics -OR-</td>
</tr>
<tr>
<td></td>
<td>MA</td>
<td>412 Probability and Statistics</td>
</tr>
<tr>
<td></td>
<td>PS</td>
<td>105 General Chemistry I</td>
</tr>
<tr>
<td></td>
<td>PS</td>
<td>105L General Chemistry I Laboratory</td>
</tr>
<tr>
<td></td>
<td>WX</td>
<td>355 Weather Analysis</td>
</tr>
<tr>
<td></td>
<td>WX</td>
<td>390 Atmospheric Physics</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>33</td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FALL</td>
<td>EC/SS</td>
<td>Lower-Level Economics -OR-</td>
</tr>
<tr>
<td></td>
<td>Social Sciences</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>WX</td>
<td>427 Forecasting Techniques</td>
</tr>
<tr>
<td></td>
<td>WX</td>
<td>490 Advanced Dynamic Meteorology I</td>
</tr>
<tr>
<td>Open Elective</td>
<td></td>
<td>0/1</td>
</tr>
<tr>
<td>TOTAL CREDITS</td>
<td></td>
<td>120</td>
</tr>
</tbody>
</table>

Military Meteorologist AOC

Suggested Program of Study

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>COM122</td>
<td>English Composition and Literature</td>
</tr>
<tr>
<td></td>
<td>EC/SS</td>
<td>Lower-Level Economics -OR-</td>
</tr>
<tr>
<td></td>
<td>Social Sciences</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>HU</td>
<td>14X Lower-Level Humanities</td>
</tr>
<tr>
<td></td>
<td>MA</td>
<td>241 Calculus and Analytical Geometry I</td>
</tr>
<tr>
<td></td>
<td>MA</td>
<td>242 Calculus and Analytical Geometry II</td>
</tr>
<tr>
<td></td>
<td>PS</td>
<td>150 Physics I for Engineers</td>
</tr>
<tr>
<td></td>
<td>UNIV 101</td>
<td>College Success Seminar*</td>
</tr>
<tr>
<td></td>
<td>WX</td>
<td>252 Introduction to Meteorology**</td>
</tr>
<tr>
<td></td>
<td>WX</td>
<td>353 Thermodynamics of the Atmosphere**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ROTC</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>29</td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS</td>
<td>125</td>
<td>Computer Science I</td>
</tr>
<tr>
<td></td>
<td>EGR</td>
<td>115 Introduction to Computing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for Engineers</td>
</tr>
<tr>
<td></td>
<td>MA</td>
<td>243 Calculus and Analytical Geometry III</td>
</tr>
<tr>
<td></td>
<td>PS</td>
<td>105 General Chemistry I</td>
</tr>
<tr>
<td></td>
<td>PS</td>
<td>105L General Chemistry I Laboratory</td>
</tr>
<tr>
<td></td>
<td>PS</td>
<td>160 Physics II for Engineers</td>
</tr>
<tr>
<td></td>
<td>PS</td>
<td>216 Physics I Laboratory</td>
</tr>
<tr>
<td></td>
<td>WX</td>
<td>220 Data Analysis and Visualization**</td>
</tr>
<tr>
<td></td>
<td>WX</td>
<td>261 Applied Climatology</td>
</tr>
<tr>
<td></td>
<td>WX</td>
<td>354 Dynamics of the Atmosphere**</td>
</tr>
<tr>
<td></td>
<td>WX</td>
<td>363 Thunderstorms</td>
</tr>
<tr>
<td></td>
<td>WX</td>
<td>365 Satellite and Radar Weather</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interpretation**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ROTC</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>32/35</td>
</tr>
</tbody>
</table>
JUNIOR YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FALL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COM221</td>
<td>Technical Report Writing</td>
<td>3</td>
</tr>
<tr>
<td>MA 345</td>
<td>Differential Equations and Matrix Methods</td>
<td>4</td>
</tr>
<tr>
<td>WX 270</td>
<td>Weather Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>WX 420</td>
<td>Advanced Atmospheric Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ROTC</td>
<td>3</td>
</tr>
<tr>
<td>SPRING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COM219</td>
<td>Speech</td>
<td>3</td>
</tr>
<tr>
<td>MA 222</td>
<td>Business Statistics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-OR-</td>
<td></td>
</tr>
<tr>
<td>MA 412</td>
<td>Probability and Statistics</td>
<td>3</td>
</tr>
<tr>
<td>WX 355</td>
<td>Weather Analysis</td>
<td>5</td>
</tr>
<tr>
<td>WX 390</td>
<td>Atmospheric Physics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ROTC</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td>33</td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FALL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC/SS</td>
<td>Lower-Level Economics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-OR-</td>
<td></td>
</tr>
<tr>
<td>MA 412</td>
<td>Probability and Statistics</td>
<td>3</td>
</tr>
<tr>
<td>WX 427</td>
<td>Forecasting Techniques</td>
<td>3</td>
</tr>
<tr>
<td>WX 490</td>
<td>Advanced Dynamic Meteorology I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ROTC</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Open electives</td>
<td>0/2</td>
</tr>
<tr>
<td>SPRING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WX 457</td>
<td>Weather Operations Seminar</td>
<td>3</td>
</tr>
<tr>
<td>WX 491</td>
<td>Advanced Dynamic Meteorology II</td>
<td>3</td>
</tr>
<tr>
<td>HU/SS 33</td>
<td>Upper-Level Humanities</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-OR-</td>
<td></td>
</tr>
<tr>
<td>MA 412</td>
<td>Probability and Statistics</td>
<td>3</td>
</tr>
<tr>
<td>WX 270</td>
<td>Weather Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>WX 420</td>
<td>Advanced Atmospheric Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ROTC</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td>24/26</td>
</tr>
</tbody>
</table>

TOTAL DEGREE CREDITS

120/121

Meteorology for Aviation Operations AOC

Suggested Program of Study

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS 119</td>
<td>Private Pilot Operations</td>
<td>4</td>
</tr>
<tr>
<td>COM122</td>
<td>English Composition and Literature</td>
<td>3</td>
</tr>
<tr>
<td>EC/SS</td>
<td>Lower-Level Economics -OR- Social Sciences</td>
<td>3</td>
</tr>
<tr>
<td>HU 14X</td>
<td>Lower-Level Humanities</td>
<td>3</td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS 221</td>
<td>Instrument Pilot Operations</td>
<td>3</td>
</tr>
<tr>
<td>AT 200</td>
<td>Air Traffic Management</td>
<td>3</td>
</tr>
<tr>
<td>CS 125</td>
<td>Computer Science I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>-OR-</td>
<td></td>
</tr>
<tr>
<td>EGR 115</td>
<td>Introduction to Computing for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>MA 243</td>
<td>Calculus and Analytical Geometry III</td>
<td>4</td>
</tr>
<tr>
<td>PS 105</td>
<td>General Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>PS 105L</td>
<td>General Chemistry I Laboratory</td>
<td>0</td>
</tr>
<tr>
<td>PS 160</td>
<td>Physics II for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>PS 216</td>
<td>Physics I Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>WX 220</td>
<td>Data Analysis and Visualization</td>
<td>3</td>
</tr>
<tr>
<td>WX 261</td>
<td>Applied Climatology</td>
<td>3</td>
</tr>
<tr>
<td>WX 354</td>
<td>Dynamics of the Atmosphere</td>
<td>3</td>
</tr>
<tr>
<td>WX 363</td>
<td>Thunderstorms</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td>33</td>
</tr>
</tbody>
</table>

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS 309</td>
<td>Aerodynamics</td>
<td>3</td>
</tr>
<tr>
<td>COM219</td>
<td>Technical Report Writing</td>
<td>3</td>
</tr>
<tr>
<td>MA 345</td>
<td>Differential Equations and Matrix Methods</td>
<td>4</td>
</tr>
<tr>
<td>WX 270</td>
<td>Weather Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>WX 420</td>
<td>Advanced Atmospheric Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ROTC</td>
<td>3</td>
</tr>
<tr>
<td>SPRING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AS 310</td>
<td>Aircraft Performance</td>
<td>3</td>
</tr>
<tr>
<td>COM219</td>
<td>Speech</td>
<td>3</td>
</tr>
<tr>
<td>MA 222</td>
<td>Business Statistics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-OR-</td>
<td></td>
</tr>
<tr>
<td>MA 412</td>
<td>Probability and Statistics</td>
<td>3</td>
</tr>
<tr>
<td>WX 355</td>
<td>Weather Analysis</td>
<td>5</td>
</tr>
<tr>
<td>WX 390</td>
<td>Atmospheric Physics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td>33</td>
</tr>
</tbody>
</table>
Academic Programs at the Prescott Campus

SENIOR YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FALL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AS</td>
<td>350 Domestic and International Navigation</td>
<td>3</td>
</tr>
<tr>
<td>EC/SS</td>
<td>Lower-Level Economics OR-Social Sciences</td>
<td></td>
</tr>
<tr>
<td>WX</td>
<td>365 Satellite & Radar Weather Interpretation</td>
<td>3</td>
</tr>
<tr>
<td>WX</td>
<td>427 Forecasting Techniques</td>
<td>3</td>
</tr>
<tr>
<td>WX</td>
<td>490 Advanced Dynamic Meteorology I</td>
<td>3</td>
</tr>
<tr>
<td>SPRING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AS</td>
<td>410 Airline Dispatch Operations</td>
<td>3</td>
</tr>
<tr>
<td>HU/SS</td>
<td>Upper-Level Humanities -OR-Social Sciences</td>
<td>3</td>
</tr>
<tr>
<td>WX</td>
<td>457 Weather Operations Seminar</td>
<td>3</td>
</tr>
<tr>
<td>WX</td>
<td>491 Advanced Dynamic Meteorology II</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>27</td>
</tr>
</tbody>
</table>

TOTAL DEGREE CREDITS

126/127

*UNIV 101 meets open elective or credit in excess of degree requirement

**Courses only offered one semester per academic year. Please check course schedule or department.
Academic Programs at the Prescott Campus

Master of Science in Safety Science

Introduction

The Master of Science in Safety Science (MSSS) degree program is designed to provide students with a practical course of study in occupational health and safety. The degree will produce safety professionals who are skilled in providing safety management expertise in a variety of industries. Graduates will be able to provide leadership and guidance in compliance issues involving EPA, OSHA, DOD, FAA, DOE, NTSB and state health, hygiene, and workplace standards, and will be prepared for service in numerous industries, including but not limited to the aviation/aerospace industry and the military.

The MSSS degree prepares graduates for professional safety positions in a variety of industrial settings including aviation. Students will qualify for jobs such as aircraft accident investigator, aviation or general safety management, operations safety, and safety design. The degree offers the opportunity for students to explore both the theoretical and pragmatic discipline that occupational health and safety has become. Particularly in light of extensive interest by the private sector and by government entities, this degree offers occupational health and safety professionals the advanced education and credentials necessary to succeed in the practice of safety.

The MSSS is a 36 credit hour program of study composed of a General Core (15 credit hours), a Research Core (9 to 12 credit hours), and electives (9 to 12 credit hours). Elective coursework must be selected from the elective list on the following page. All elective courses may not be offered every year. Check with an advisor for a schedule of course offerings.

Preference will be given to applicants with an undergraduate background in college-level mathematics, the physical and natural sciences, computer applications, behavioral science, and statistics. Students who lack prerequisite knowledge in algebra and trigonometry, physics, and chemistry will be required to take deficiency coursework. The prerequisite knowledge for any graduate course must be satisfied before enrollment in the course is permitted.

Degree Requirements

SAFETY SCIENCE GENERAL CORE

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSF 580</td>
<td>Industrial Hygiene and Environmental Protection</td>
<td>3</td>
</tr>
<tr>
<td>MSF 601</td>
<td>Ergonomics</td>
<td>3</td>
</tr>
<tr>
<td>MSF 602</td>
<td>Human Factors*</td>
<td>3</td>
</tr>
<tr>
<td>MSF 603</td>
<td>Occupational Safety</td>
<td>3</td>
</tr>
<tr>
<td>MSF 613</td>
<td>Aviation Safety</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

* Prerequisite MSF 600

SAFETY SCIENCE RESEARCH CORE

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSF 600</td>
<td>Quantitative Methods</td>
<td>3</td>
</tr>
<tr>
<td>MSF 612</td>
<td>Research Methods*</td>
<td>3</td>
</tr>
<tr>
<td>AND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Option I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSF 700</td>
<td>Thesis*</td>
<td>6</td>
</tr>
</tbody>
</table>
| * Prerequisite MSF 600 and MSF 612
| **OR** | | |
| **Option II** | | |
| MSF 690 | Graduate Research Project* | 3 |
| * Prerequisite MSF 600 and MSF 612
| **Total Credits** | | **9-12** |
ELECTIVES

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSA 602</td>
<td>The Air Transportation System</td>
<td>3</td>
</tr>
<tr>
<td>MSA 613</td>
<td>Airport Operations Safety</td>
<td>3</td>
</tr>
<tr>
<td>MSF 530</td>
<td>Aircraft Accident Investigation</td>
<td>3</td>
</tr>
<tr>
<td>MSF 605</td>
<td>Industrial Hygiene Measurement**</td>
<td>3</td>
</tr>
<tr>
<td>MSF 607</td>
<td>Epidemiology*</td>
<td>3</td>
</tr>
<tr>
<td>MSF 609</td>
<td>System Safety*</td>
<td>3</td>
</tr>
<tr>
<td>MSF 610</td>
<td>Industrial Security</td>
<td>3</td>
</tr>
<tr>
<td>MSF 611</td>
<td>Case Studies in Safety*</td>
<td>3</td>
</tr>
<tr>
<td>MSF 614</td>
<td>Safety Ethics</td>
<td>3</td>
</tr>
<tr>
<td>MSF 630</td>
<td>Aircraft Accident Analysis</td>
<td>3</td>
</tr>
<tr>
<td>MSF 635</td>
<td>Advanced Aircraft Survivability Analysis and Design***</td>
<td>3</td>
</tr>
<tr>
<td>MSF 655</td>
<td>Airline and Operations Safety Management</td>
<td>3</td>
</tr>
<tr>
<td>MSF 675</td>
<td>Aviation Maintenance Safety</td>
<td>3</td>
</tr>
<tr>
<td>MSF 685</td>
<td>Aviation Security</td>
<td>3</td>
</tr>
<tr>
<td>MSF 696</td>
<td>Graduate Internship in Safety Science</td>
<td>3</td>
</tr>
<tr>
<td>MSF 699</td>
<td>Special Topics in Safety Science</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits 9 – 12

* Prerequisite MSF 600
** Prerequisite MSF 580
*** Prerequisite MSF 530

Graduate Assistantships

Graduate assistantships are academic appointments that are normally reserved for qualified graduate students. A graduate research assistant is involved in research activities under the direction of a faculty member or a research associate. A graduate administrative assistant assists departments or faculty with curriculum development, special projects, and other duties as assigned. To be eligible for a graduate assistantship, a student must have full graduate status in a degree program, must have maintained a CGPA of 3.00 out of a possible 4.00 or above through the end of the semester (graduate or undergraduate) preceding the appointment, and must demonstrate adequate communication and technical skills.

Each department has the responsibility to post the availability of its graduate assistantships. Students interested in applying should submit an application form and a 500-word essay directly to the department. Incoming students should contact departments directly about the availability of assistantships.

Full graduate assistantships carry a stipend set by the University and a tuition waiver. Graduate assistants with such appointments are expected to devote up to 20 hours each week to effectively carry out their assignments. Under some circumstances, partial assistantships providing either tuition or a stipend may be granted. Expected time to be devoted is set by the assigning department. Graduate assistants are permitted to accept other University employment; however, University policies limit all students to a total of 25 hours of work per week, including the graduate assistantship. All graduate research and administrative assistantships, both full and partial, require that the recipient be registered for at least three graduate credits at Embry-Riddle for any semester of their appointment. Summer registration is not required, but encouraged.

Graduate Internships

Graduate internships are temporary professional or industrial work opportunities available to graduate students. There are two types of internships: resident and nonresident. Resident internships are professional work activities supported by a partnership between the University and industry and conducted on campus under the supervision of a faculty/staff sponsor. Nonresident internships are professional work activities conducted off campus at the supporting organization facility. Full-time employees of the offering organization are not eligible for an internship appointment and cannot receive elective credit for their professional work service.

Graduate students who have full graduate status, are in good standing, with a minimum of six completed graduate credit hours, and
who earn a cumulative GPA of 3.00 on a 4.00 basis, are eligible to apply for graduate internships. Students must demonstrate adequate communication and technical skills.

Students selected for an internship must register for the approved number of credit hours in the departmental internship course and pay all fees. Graduate academic credit is awarded at a rate of one credit hour for every 200 clock hours of work completed, up to a maximum of three credit hours in one semester. Three internship credit hours may be applied as an elective toward degree requirements. Students are advised to consult with their Safety Science graduate program coordinator for approval to use internship credits toward their degree program.

Guidelines for Graduate Research Projects and Theses

Introduction
The graduate program in the Department of Safety Science offers the degree of Master of Science in Safety Science (MSSS), which is a 36 credit-hour program. In addition to course work, this degree requires the completion of a research project, either a three-hour Graduate Research Project (GRP, with 33 hours of course work) or a six-hour Master’s Thesis (with 30 hours of course work). Those students who are planning to do a GRP should have registered for a total of three hours of MSF 690 before graduation. Those planning to do a thesis should register for six hours of MSF 700 before graduation. The detailed information in this section is intended to assist graduate students in the completion of this research requirement.

The Difference between a GRP and a Thesis
The difference between a GRP and a thesis is primarily a question of scope, but there are other distinguishing features.

If the student has any aspirations to later pursue a doctorate, a thesis should be considered, since this is good preparation for writing a dissertation. A thesis is a project that requires the collection and analysis of data in an original fashion. This work should be suitable for submission to a peer-reviewed journal for publication.

In contrast, a GRP does not necessarily involve original work in the form of collection and analysis of data. If it does, it will be on a scale smaller than a thesis. A GRP may also consist of the results of an internship, such as the design of a safety program for a specific industry or a report developed from a hazard analysis. Both of these examples are appropriate GRP topics, but are not appropriate for a thesis.

Steps in the Completion of the Research Requirement
1. IDEA: Generate ideas for research in consultation with the graduate faculty. This will allow the student to arrive at an idea that is consistent with the curriculum of the MSSS program and is of genuine interest to the student.
2. COMMITTEE SELECTION: Choose a committee of three people. This committee must consist of two members of the MSSS graduate faculty, one of whom must chair the committee. The third member may be anyone from the faculty or from outside the University who can contribute to the project (MSSS students are not eligible). For instance, if you are writing a safety program plan in consultation with an outside corporate entity, the third member could be a representative from that entity.
3. PROPOSAL: Write a proposal and have this proposal approved by all members of the committee. The proposal need not be more than a few pages (3-5). The proposal must consist of:
 • An introduction
 • A clear problem statement (probably an hypothesis, but not necessarily)
 • An annotated bibliography of approximately 20 resources
 • Methods for investigating the problem
The format for the proposal should conform to the APA Guide. Note that a faculty member may remove him or herself from the committee at this (or any) stage of the process. If this happens, the student must then choose an alternate member. A copy of the proposal signed by the entire committee should be placed on file with the Graduate Admissions Coordinator.

4. HUMAN SUBJECTS: For all projects that require the use of human subjects, the student must submit an approval form through the University’s Institutional Review Board (IRB). Forms for this process are available through the Sponsored Programs Pre-Award Office at Daytona Beach. It should be noted that almost all research conducted in the Department of Safety Science will require the submission of these forms. If there is any question, the student should consult his or her committee.

5. RESEARCH: The research should be conducted in close consultation with the committee. If the committee is not consulted on a regular basis through this process, the chance of approval of the final product diminishes.

6. DOCUMENT PREPARATION: Do not begin writing the GRP or thesis until you have the approval of the committee. The process of writing should begin at least at the beginning of the semester of anticipated graduation and no later. Submit the introduction to the committee first, and do not move to subsequent sections until the committee has approved that section. As the committee approves each section, the student may move on to the next section so that it may be approved by the committee. Even if the student begins submitting sections at the beginning of the semester of graduation, this will not guarantee that the committee will approve the final document by the end of the semester. It is wise to begin this process as early in your graduate career as possible. Despite any plans that you may make to leave campus or begin work, the committee cannot guarantee that you will have this process completed in any predetermined time frame. You will be allowed to finish when and only when you have satisfied the committee. Also note that summers are allocated for the purpose of completing your research.

7. FINAL DEFENSE: Once the final document is prepared and approved in its final form by the committee, the oral defense will be scheduled. The student is responsible for arriving at a mutually agreeable time with the committee, and issuing invitations to the graduate faculty, the administration of the College of Aviation, the deans of the Colleges of Arts and Sciences and Engineering, and the entire graduate student body. Again, note that this is the student’s responsibility. Be aware that this is a time-consuming process and allow sufficient time. The final defense of the GRP or thesis will require a formal presentation using PowerPoint or other presentation software; this
presentation will be limited to 30 minutes, with another 15 minutes allowed for questions from the committee and the audience. After the defense, the student’s committee will advise the student whether he or she has passed and what revisions are necessary. At this point the committee will decide whether to sign the signatory page.

8. COMPLETION: Finally, the student must complete all necessary paperwork for graduation (assuming that all coursework has been completed as well). For the GRP, a copy must be provided to the Graduate Admissions Coordinator. For the thesis, bound copies must be provided for the library and the Graduate Admissions Coordinator. Copies of either the GRP or thesis may be provided to other recipient(s) as deemed appropriate by the student.

9. ENROLLMENT: Once a student has enrolled for 3 hours of GRP (MSF 690) or 6 hours of thesis (MSF 700) credit, the student must continuously enroll for 1 credit of GRP or Thesis. This policy is outlined in detail in the Graduate Research Project Grading and the Thesis Grading sections of the University catalog.

Deadlines for GRP and Thesis Preparation
Each student should generate ideas for research in consultation with the graduate faculty. These ideas should be generated as soon as possible after starting your graduate program.

Committee Organization
Fall 2011 Due Friday, April 15, 2011
Spring 2012 Due Friday, December 2, 2011
The committee is officially formed by this date. Student has requested and received an acceptance from a Safety Science faculty to be the Chair of the committee. Prospective committee members have each contacted the Chair indicating his/her willingness to serve on the committee. Note that a faculty member may request removal from the committee at any stage of the process. If this happens, the student must then choose an alternate member. A copy of the committee approval sheet signed by the entire committee should be placed on file with the Graduate Admissions Coordinator and GRP/Thesis manager.

Proposal
Fall 2011 Due Friday, September 9, 2011
Spring 2012 Due Friday, January 20, 2012
Each student will write a proposal and have this proposal approved by all members of the committee. The proposal need not be more than 3-5 pages. The proposal must consist of an introduction, a clear problem statement, an annotated bibliography of approximately 20 resources, and methods for investigating the problem. The format for the proposal should conform to the Publication Manual of the American Psychological Association, fifth edition.

First Three Chapters – Introduction, Review, and Methodology
Fall 2011 Due Friday, October 21, 2011
Spring 2012 Due Friday, March 3, 2012
An acceptable draft of the first three chapters of the project must be presented to the committee by the due date.

Defense Confirmation
Fall 2011 Due Thursday, November 10, 2011
Spring 2012 Due Friday, March 30, 2012
The committee chair and committee members must agree that the student is near enough to completion to schedule the GRP/Thesis defense.
Academic Programs at the Prescott Campus

GRP or Thesis Completed and Delivered to the Committee

<table>
<thead>
<tr>
<th>Term</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall 2011</td>
<td>Friday, December 2, 2011</td>
</tr>
<tr>
<td>Spring 2012</td>
<td>Friday, April 20, 2012</td>
</tr>
</tbody>
</table>

GRP and Thesis Defense

The GRP and Thesis Defense presentations will occur during the final week of classes.

<table>
<thead>
<tr>
<th>Term</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall 2011</td>
<td>Friday/Saturday, December 9 & 10, 2011</td>
</tr>
<tr>
<td>Spring 2012</td>
<td>Friday/Saturday, April 27 & 28, 2012</td>
</tr>
</tbody>
</table>

The presentation and defense will be one hour, including:

- 30-minute presentation
- 15-minute question-and-answer period
- 15-minute committee discussion
The College of Engineering offers four complementary programs, all focused on the aerospace industry. Aerospace, Computer, Electrical and Mechanical engineers often are the primary team members in the design, analysis, or refurbishment of aircraft, spacecraft, missiles, rockets, and the ground-based systems that support their operations. The strength of the college is built on this combination of disciplines focused on aerospace platforms.

Aerospace Engineering concentrates its efforts on aircraft and spacecraft systems including structures, aerodynamics, dynamics, performance and control.

Computer Engineering focuses on the design and development associated with computer hardware, including chips and circuits, and with the analysis, design, and development of mission-critical software systems employed in these devices.

Electrical Engineering focuses on electrical systems, controls, and communications.

Mechanical Engineering focuses on propulsion and robotics with an emphasis on jet aircraft engines and autonomous vehicles such as Unmanned Aerial Vehicles (UAVs) and Planetary Rovers.

The philosophy of our college is to give students a broad background, enabling them to pursue careers in many technical areas, but we choose to use aerospace as our vehicle to demonstrate the exciting, creative, and technical aspects of these engineering disciplines.

With this in mind, our mission is to provide undergraduate education founded on a rigorous, applied treatment of engineering fundamentals coupled with modern engineering tools.

We are dedicated to providing excellence in aviation and space education, based in aerospace, computer, electrical, and mechanical engineering, demonstrated through quality teaching, scholarly activity, facilities, and curriculum. Our engineering programs are recognized for their strong emphasis and rigor in engineering science and design founded on hands-on laboratory-based education. The college’s vision is to contribute well-prepared professionals for early success in the industry or in graduate school. Our faculty is dedicated to educating engineers for the 21st century.

The College of Engineering embraces the philosophies of the Accreditation Board of Engineering and Technology (ABET). We have established objectives for our alumni to prepare them for a productive and rewarding career.

Along with these objectives we have established outcomes we expect from our students as they progress through graduation. Those outcomes are listed below:

1. Our graduating students will have experienced a core of humanities, social sciences, and communications and demonstrate the use of this core to enhance the technical content of their engineering curriculum.

2. Graduating seniors will be competent in fundamental math and basic science subjects.
3. All graduating engineering students will be competent in a subgroup of core engineering fundamentals appropriate to their discipline.

4. Engineering students graduating from our programs will demonstrate proficiency in core topics in their program listed below:
 a. **Aerospace Engineering (Aeronautics Option)**
 Aerodynamics, Thermal Sciences, Structures, Flight Mechanics, Propulsion, Electronics, Aerospace Materials, Astronautics, and Aircraft Design
 b. **Aerospace Engineering (Astronautics Option)**
 Astrodynamics, Attitude Dynamics and Control, Structures, Rocket Propulsion, Thermal Sciences, Aeronautics, Space Systems, Space Environment Effects, Aerospace Materials, and Spacecraft Design
 c. **Electrical Engineering**
 Analog/Digital Circuits, Electronic Devices, Controls, Electromagnetics, Power Conversion, Telecommunications, Hardware and Software Systems, and Design
 d. **Computer Engineering**
 Electrical Circuits, Electronics, Controls, Logic Circuits, Computer Architecture, Computer Operating Systems, Algorithms and Data Structures, and Design
 e. **Mechanical Engineering**

5. Graduating students will have had the opportunity to specialize and demonstrate competence in a subdiscipline in their chosen field, to provide depth in a subject area or prepare them for graduate education.

6. All engineering students will be proficient in engineering design.

7. All engineering students will demonstrate design competence through a major design (capstone) experience focused on designing a project, device, system, or process incorporating engineering standards and realistic constraints.

8. All engineering students will be proficient in modern laboratory techniques and state-of-the-art computer technology.

The Aerospace Engineering, Electrical Engineering, and Computer Engineering programs are accredited by the Engineering Accreditation Commission of ABET, 111 Market Place, Suite 1050, Baltimore, MD 21202-4012, telephone (410) 347-7700. Mechanical Engineering accepted its first freshman class in the fall semester of 2007 and is under review for accreditation by ABET in summer 2011.

It is the goal of the College of Engineering that normal incoming freshmen be able to complete their baccalaureate studies in four years. Depending on preparation and the time committed to classes, students may be able to graduate more quickly than that or it may take them longer. The nominal four-year program assumes that students arrive here having mastered trigonometry, two years of algebra, and one year of high school physics.
Because communication skills are vital to all modern engineering disciplines, entering students should have a strong background in English composition.

The College of Engineering is proud of its programs. Industry praises the quality of our graduates, and graduate schools welcome our students. The following sections provide specific information on each degree program. Details on the content and emphasis of the degree and the degree requirements are shown. Please remember that questions regarding the degree programs are always welcome. Please feel free to contact the Admissions office, the College of Engineering, or the individual departments directly.
The Bachelor of Science in Aerospace Engineering provides a broad exposure to engineering fundamentals and prepares the graduating student for a wide range of engineering positions in industry or government. The program also is an excellent preparation for graduate school in a number of disciplines. The program’s focus is primarily on the engineering of mission-oriented vehicles for atmospheric and space flight. In addition to the general education requirements, the student will study aerodynamics, structures, propulsion, space systems, controls, materials, instrumentation, electrical fundamentals, computer applications, orbital mechanics, and design. Students choose to integrate their knowledge in either an aircraft or spacecraft capstone design project. Design projects in a number of courses will develop and refine the students’ ability to integrate their knowledge, communicate both verbally and in writing, and work in a team environment. A large number of hands-on experiences will expose the student to practical engineering to balance the theoretical analysis required to understand aircraft and spacecraft systems.

The overall objective of the Aerospace Engineering program at Prescott is to produce graduates who will be successful practitioners of aerospace engineering. The program objectives to accomplish this goal are:

I. Math, Science, and Engineering Fundamentals
Alumni working in the engineering field will demonstrate skills in math, science, and engineering with an emphasis on solving problems using fundamental engineering principles, including engineering logic, traditional analytical methods, modern software, and experimental verification of analytical methods. Additionally and more specifically:
1. Be competent in fundamental engineering areas that include statics, dynamics, solid mechanics, circuits, materials science, fluid mechanics, thermodynamics, experimental techniques, and instrumentation.
2. Use appropriate software that would enable analysis, simulation, and design of aerospace systems (for example, MATLAB, ANSYS, CATIA).

II. Social Context of Engineering Practice
Alumni working in the engineering field will demonstrate an understanding and philosophy that promotes engineering practice founded in technical integrity, ethics, social and environmental responsibility, and global awareness. Alumni will recognize the importance of preparing themselves for continued education and independent thought.

III. Design and Teamwork
Alumni working in the engineering field will demonstrate the ability to assimilate topics from multiple sources, design a system or process, communicate that design effectively through verbal and written means, and work effectively on a team. They will also be cognizant of engineering project management. Alumni will:
1. Have a broad understanding of the interrelations of the aerospace disciplines and their impact on aerospace designs.

2. Understand the importance of teamwork, the value of multiple experiences, and be able to communicate to a broad array of technical and non-technical audiences.

3. Bring design expertise to the work environment within a chosen subset of aerospace engineering disciplines.

IV. Discipline Specific Depth

Alumni working in the engineering field will demonstrate depth in their discipline and exposure in related areas. They will:

1. Have demonstrated depth in aerospace structures and propulsion, and either aeronautics or astronautics.

2. Have depth in theoretical, computational, and experimental methods.

These objectives coupled with the common college outcomes are extensive and form the foundation of the program. We ask a lot from our students and faculty. The commitment students make in the program and consequently the skills they bring to the workforce are substantial and are required to be among the best in the industry.

The Aerospace Engineering program is accredited by the Engineering Accreditation Commission of ABET, 111 Market Place, Suite 1050, Baltimore, MD 21202-4012, telephone (410) 347-7700.

Degree Requirements

The Bachelor of Science in Aerospace Engineering program requires successful completion of a minimum of 129 credit hours. The program may be completed in eight semesters assuming appropriate background and full-time enrollment. A minimum cumulative grade point average of 2.00 is needed for all required AE, EGR, EP, and ES courses, excluding technical electives. The courses necessary to earn this degree are listed below.

Students should be aware that many courses have prerequisites and/or corequisites. Check the course descriptions at the back of this catalog before registering for classes to ensure required sequencing. Students should note that a grade of C or better is required in MA 241, MA 242, and PS 150 for entry into ES courses and also PS 160 for entry into AE courses.

Suggested Program of Study

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower-Level Humanities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEC 220 Digital Circuit Design</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CEC 222 Digital Circuit Laboratory</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>COM 122 English Composition and Literature</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>EC 225 Engineering Economics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>EGR 101 Introduction to Engineering</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>HU 14X Lower-Level Humanities</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MA 241 Calculus and Analytical Geometry I</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>MA 242 Calculus and Analytical Geometry II</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>PS 150 Physics I for Engineers</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PS 160 Physics II for Engineers</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>UNIV 101 College Success**</td>
<td>(1)</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits 32

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM 221 Technical Report Writing</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>EGR 115 Introduction to Computing for Engineers</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>EGR 200 Computer Aided Conceptual Design of Aerospace Systems</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ES 201 Statics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ES 202 Solid Mechanics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ES 204 Dynamics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ES 206 Fluid Mechanics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MA 243 Calculus and Analytical Geometry III</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
Academic Programs at the Prescott Campus

JUNIOR YEAR (AERONAUTICS OPTION)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE 301</td>
<td>Aerodynamics I</td>
<td>3</td>
</tr>
<tr>
<td>AE 302</td>
<td>Aerodynamics II</td>
<td>3</td>
</tr>
<tr>
<td>AE 314</td>
<td>Experimental Aerodynamics</td>
<td>1</td>
</tr>
<tr>
<td>AE 315</td>
<td>Experimental Aerodynamics Lab</td>
<td>1</td>
</tr>
<tr>
<td>AE 318</td>
<td>Aerospace Structures I</td>
<td>3</td>
</tr>
<tr>
<td>AE 413</td>
<td>Airplane Stability and Control</td>
<td>3</td>
</tr>
<tr>
<td>AE 418</td>
<td>Aerospace Structures II</td>
<td>3</td>
</tr>
<tr>
<td>AE 430</td>
<td>Control Systems Analysis and Design</td>
<td>3</td>
</tr>
<tr>
<td>ES 305</td>
<td>Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>ES 320</td>
<td>Engineering Materials Science</td>
<td>2</td>
</tr>
<tr>
<td>ES 321</td>
<td>Engineering Materials Science Lab</td>
<td>1</td>
</tr>
<tr>
<td>EE 335</td>
<td>Electrical Engineering I***</td>
<td>2</td>
</tr>
<tr>
<td>EE 336</td>
<td>Electrical Engineering I Lab***</td>
<td>1</td>
</tr>
<tr>
<td>PS 105</td>
<td>General Chemistry I</td>
<td>1</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>33</td>
</tr>
</tbody>
</table>

JUNIOR YEAR (ASTRONAUTICS OPTION)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE 301</td>
<td>Aerodynamics I</td>
<td>3</td>
</tr>
<tr>
<td>AE 313</td>
<td>Space Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>AE 318</td>
<td>Aerospace Structures I</td>
<td>3</td>
</tr>
<tr>
<td>AE 325</td>
<td>Experimental Space Systems Engineering I</td>
<td>3</td>
</tr>
<tr>
<td>AE 326</td>
<td>Experimental Space Systems Engineering</td>
<td>3</td>
</tr>
<tr>
<td>AE 426</td>
<td>Spacecraft Attitude Dynamics and Control</td>
<td>3</td>
</tr>
<tr>
<td>AE 430</td>
<td>Control Systems Analysis and Design</td>
<td>3</td>
</tr>
<tr>
<td>EP 394</td>
<td>Space Systems Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ES 305</td>
<td>Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>ES 320</td>
<td>Engineering Materials Science</td>
<td>2</td>
</tr>
<tr>
<td>ES 321</td>
<td>Engineering Materials Science Lab</td>
<td>1</td>
</tr>
<tr>
<td>EE 335</td>
<td>Electrical Engineering I***</td>
<td>2</td>
</tr>
<tr>
<td>EE 336</td>
<td>Electrical Engineering I Lab***</td>
<td>1</td>
</tr>
<tr>
<td>PS 105</td>
<td>General Chemistry I</td>
<td>1</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>33</td>
</tr>
</tbody>
</table>

SENIOR YEAR (AERONAUTICS OPTION)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE 313</td>
<td>Space Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>AE 416</td>
<td>Aerospace Structures and Instrumentation</td>
<td>1</td>
</tr>
<tr>
<td>AE 417</td>
<td>Aerospace Structures and Instrumentation Lab</td>
<td>1</td>
</tr>
<tr>
<td>AE 420</td>
<td>Aircraft Preliminary Design</td>
<td>4</td>
</tr>
<tr>
<td>AE 421</td>
<td>Aircraft Detail Design</td>
<td>4</td>
</tr>
<tr>
<td>COM 420</td>
<td>ADV Technical Communications I</td>
<td>1</td>
</tr>
<tr>
<td>COM 430</td>
<td>ADV Technical Communications II</td>
<td>2</td>
</tr>
<tr>
<td>ME 309</td>
<td>Airbreathing and Rocket Propulsion</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>31</td>
</tr>
</tbody>
</table>

SENIOR YEAR (ASTRONAUTICS OPTION)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE 414</td>
<td>Space Propulsion</td>
<td>3</td>
</tr>
<tr>
<td>AE 418</td>
<td>Aerospace Structures II</td>
<td>3</td>
</tr>
<tr>
<td>AE 427</td>
<td>Spacecraft Preliminary Design</td>
<td>4</td>
</tr>
<tr>
<td>AE 445</td>
<td>Spacecraft Detail Design</td>
<td>4</td>
</tr>
<tr>
<td>AE 416</td>
<td>Aerospace Structures and Instrumentation</td>
<td>1</td>
</tr>
<tr>
<td>AE 417</td>
<td>Aerospace Structures and Instrumentation Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>COM 420</td>
<td>ADV Technical Communications I</td>
<td>1</td>
</tr>
<tr>
<td>COM 430</td>
<td>ADV Technical Communications II</td>
<td>2</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>31</td>
</tr>
</tbody>
</table>

Total Degree Credits 129
Technical Electives:
AE: Upper-level, except 399††, 499††
CEAE, CEME: With prior approval of the Aerospace Engineering Department.
CEC: Upper level, except 399††, 499††
CS: 325, 335, 350, 420
EE: Upper level, except 399††, 499††
EGR: Upper level
EP: Upper level, except 399††, 499††
ES: Upper level, except 399††, 499††
MA: 412, 432, 438, 441, 442, 443
ME: Upper-level, except 399††, 499††
PS: 303, 321, 322, 350, 375, 420
SE: 300

†† Must be approved by the Aerospace Engineering Department before taking this course.

Three credit hours of technical elective credit must be taken from available upper-level College of Engineering courses not specifically listed in the student’s degree requirements. The remaining three credit hours must be selected from the list above or an upper-level ROTC course may be substituted.

General Education Electives

* Embry-Riddle courses in the general education categories of Humanities, Mathematics, and Social Sciences may be chosen as specified below, assuming prerequisite requirements are met. Courses from other institutions are acceptable if they fall into these broad categories and are at the level specified above in the Aerospace Engineering vertical outline.

Humanities

LOWER-LEVEL:
Any HU/L course under 300 level.

UPPER-LEVEL:
HU 330 or HU 399/SS 399 - Study Abroad

Social Sciences

LOWER-LEVEL:
Any EC/SS/PSY/RS course under 300 level.

Mathematics

UPPER-LEVEL:
MA 412, MA 432, MA 441, or MA 443 or as approved by the chair of Aerospace Engineering.

Prior approval by the Aerospace Engineering Department chair is required for any substitutions for general education electives.

** UNIV 101 is taken in excess of degree requirements or meets open elective credit.

*** EE 223/224 may be substituted for EE 335/336.
Academic Programs at the Prescott Campus

Computer Engineering
Bachelor of Science

The Bachelor of Science in Computer Engineering provides the student with the opportunity to acquire a broad background in computing, programming languages, circuit theory, computer design, telecommunication systems, embedded control systems, real-time systems, and software engineering. The curriculum includes courses in general education, computer science, software engineering, electrical engineering, and the capstone sequence of senior design classes.

This added emphasis on real-time embedded control systems and hardware/software interfaces places the Computer Engineering program in a unique position to increase employment opportunities after graduation. In addition, the program includes significant project work that is designed to prepare students to work as part of a team on the development of complex systems including both software and hardware. It allows the student opportunities to build capabilities in teamwork, designing to requirements, and quality assurance techniques.

The overall objective of the Computer Engineering program at Prescott is to produce graduates who will be successful practitioners of computer engineering. The program objectives to accomplish this goal are:

I. Math, Science, and Engineering Fundamentals
Alumni working in the engineering field will demonstrate skills in math, science, and engineering, with an emphasis on solving problems using fundamental engineering principles, including engineering logic, traditional analytical methods, modern software, and experimental verification of analytical methods. Additionally and more specifically, alumni will be:
1. Competent in the fundamental areas of digital and computer systems, software development, and modeling of physical systems.
2. Able to use or learn to use software tools and programming.
3. Able to apply mathematically based physical laws to solve problems presented to them.

II. Social Context of Engineering Practice
Alumni working in the engineering field will demonstrate an understanding and philosophy that promotes engineering practice founded in technical integrity, ethics, social and environmental responsibility, and global awareness. Alumni will recognize the importance of preparing themselves for continued education and independent thought.

III. Design and Teamwork
Alumni working in the engineering field will demonstrate the ability to assimilate topics from multiple sources, design a system or process, communicate that design effectively though verbal and written means, and work effectively on a team.
They will also be cognizant of engineering project management. Alumni will:

1. Foster a sense of citizenship, positive group dynamics, team participation, and team responsibility in a global community and economy.
2. Demonstrate leadership where appropriate in their work groups.
3. Be able to plan, schedule, and carry out projects assigned to them.
4. Be able to work together on an interdisciplinary team such as found in the aerospace culture.

IV. Discipline Specific Depth

Alumni working in the engineering field will demonstrate depth in their discipline and exposure in related areas. They will:

1. Have depth in embedded and real-time control systems, software design, or computer architecture.
2. Show an aptitude for independent work while accomplishing the tasks they are assigned.
3. Demonstrate an ability to develop a deeper understanding of a particular area of CE or to learn about a new area.
4. Be able to use software tools appropriate to their jobs including MATLAB, VHDL, IDE, etc.
5. Be capable of immediate productivity upon their graduation.

The Computer Engineering program is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology, 111 Market Place, Suite 1050, Baltimore, MD 21202-4012; Telephone: (410) 347-7700.

Degree Requirements

The Bachelor of Science in Computer Engineering can be earned in eight semesters assuming appropriate background and full-time enrollment. Successful completion of a minimum of 127 credit hours is required.

Students should be aware that several courses in each academic year may have prerequisites and/or corequisites. Check the course descriptions at the back of this catalog before registering for classes to ensure requisite sequencing. The B.S. degree requires that students have a minimum cumulative grade point average of 2.00 in all CEC, EE, SE, CS, and EGR courses that fulfill any degree requirement. The Computer Engineering degree includes a space option in which EP 394, AE 427, and AE 445 substitute for a technical elective, CEC 420, and CEC 421.

Suggested Program of Study

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEC 220</td>
<td>Digital Circuit Design</td>
<td>3</td>
</tr>
<tr>
<td>CEC 222</td>
<td>Digital Circuit Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>COM 219</td>
<td>Speech</td>
<td>3</td>
</tr>
<tr>
<td>COM 122</td>
<td>English Composition and Literature</td>
<td>3</td>
</tr>
<tr>
<td>EGR 101</td>
<td>Introduction to Engineering</td>
<td>2</td>
</tr>
<tr>
<td>MA 241</td>
<td>Calculus and Analytical Geometry I</td>
<td>4</td>
</tr>
<tr>
<td>MA 242</td>
<td>Calculus and Analytical Geometry II</td>
<td>4</td>
</tr>
<tr>
<td>PS 150</td>
<td>Physics I for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>UNIV 101</td>
<td>College Success***</td>
<td>1</td>
</tr>
</tbody>
</table>

Total Credits 32

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEC 320</td>
<td>Microprocessor Systems</td>
<td>3</td>
</tr>
<tr>
<td>CEC 322</td>
<td>Microprocessor Systems Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>COM 221</td>
<td>Technical Report Writing</td>
<td>3</td>
</tr>
<tr>
<td>CS 125</td>
<td>Computer Science I</td>
<td>4</td>
</tr>
</tbody>
</table>
Academic Programs at the Prescott Campus

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 222</td>
<td>Introduction to Discrete Structures</td>
<td>3</td>
</tr>
<tr>
<td>EE 223</td>
<td>Linear Circuit Analysis I</td>
<td>3</td>
</tr>
<tr>
<td>EE 224</td>
<td>Electrical Engineering Laboratory I</td>
<td>1</td>
</tr>
<tr>
<td>MA 243</td>
<td>Calculus and Analytical Geometry III</td>
<td>4</td>
</tr>
<tr>
<td>MA 345</td>
<td>Differential Equations and Matrix Methods</td>
<td>4</td>
</tr>
<tr>
<td>PS 160</td>
<td>Physics II for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>PS 250</td>
<td>Physics III for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>PS 253</td>
<td>Physics Laboratory for Engineers</td>
<td>1</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>33</td>
</tr>
</tbody>
</table>

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEC 460</td>
<td>Telecommunications Systems</td>
<td>3</td>
</tr>
<tr>
<td>CS 420</td>
<td>Operating Systems</td>
<td>3</td>
</tr>
<tr>
<td>EC 225</td>
<td>Economics</td>
<td>3</td>
</tr>
<tr>
<td>EE 302</td>
<td>Electronic Devices and Circuits</td>
<td>3</td>
</tr>
<tr>
<td>EE 309</td>
<td>Signals and Linear Systems Analysis</td>
<td>4</td>
</tr>
<tr>
<td>MA 412</td>
<td>Probability and Statistics</td>
<td>3</td>
</tr>
<tr>
<td>SE 300</td>
<td>Software Engineering Practices</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Open Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Technical Elective**</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>31</td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEC 420</td>
<td>Computer Systems Design</td>
<td>3</td>
</tr>
<tr>
<td>CEC 421</td>
<td>Computer Systems Design II</td>
<td>3</td>
</tr>
<tr>
<td>CEC 450</td>
<td>Real Time Systems</td>
<td>3</td>
</tr>
<tr>
<td>CEC 470</td>
<td>Computer Architecture</td>
<td>3</td>
</tr>
<tr>
<td>EE 401</td>
<td>Control Systems Analysis and Design</td>
<td>3</td>
</tr>
<tr>
<td>EE 402</td>
<td>Control Systems Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>HU 330</td>
<td>Values and Ethics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Open Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Technical Elective**</td>
<td>6</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>31</td>
</tr>
</tbody>
</table>

TOTAL Degree Credits 127

*Embry-Riddle courses in the general education categories of Humanities and Social Sciences may be chosen from those listed below, assuming prerequisite requirements are met. Courses from other institutions are acceptable if they fall into these broad categories and are at the level specified above in the Computer Engineering vertical outline.

Humanities

LOWER-LEVEL:
- Any course in the HU/L series under 300 level.

UPPER-LEVEL:
- Any course in the HU/L series equal to or above 300 level.

Social Sciences

LOWER-LEVEL:
- Any SS/EC/PSY/RS course under 300 level.

UPPER-LEVEL:
- Any SS or EC course equal to or above 300 level, or PSY 350.
- SIS and RS courses may be substituted for Humanities and Social Sciences at the appropriate levels.

Technical electives include any AE, CE, CS, EE, ES, MA, or PS course above the 300 level or other courses approved by the CE department chair.

UNIV 101 is taken in excess of degree requirements or meets open elective credit.

The Computer Engineering degree includes a space option in which AE 427 and AE 445 substitute for CEC 420 and CEC 421 and EP 394 is taken as one of the technical electives.
Academic Programs at the Prescott Campus

Electrical Engineering
Bachelor of Science

The Bachelor of Science in Electrical Engineering provides the student with the opportunity to acquire a broad background in circuit theory, communication systems, computers, control systems, electromagnetic fields, energy sources and systems, and electronic devices. The student also gains specialization in avionics appropriate for entry-level engineering positions in the aerospace industry. Emphasis on design places the Embry-Riddle Electrical Engineering student in a unique position to increase employment opportunities after graduation.

The overall objective of the Electrical Engineering program at Prescott is to produce graduates who will be successful practitioners of electrical engineering. The program objectives to accomplish this are:

I. Math, Science, and Engineering Fundamentals
Alumni working in the engineering field will demonstrate skills in math, science, and engineering, with an emphasis on solving problems using fundamental engineering principles, including engineering logic, traditional analytical methods, modern software, and experimental verification of analytical methods. Alumni will be:

1. Competent in the fundamental areas of statics/dynamics, thermo/heat transfer, and digital/linear circuits as appropriate for a generalized systems education.
2. Able to use or learn to use software tools and programming.
3. Able to apply mathematically based physical laws to solve problems presented to them.

II. Social Context of Engineering Practice
Alumni working in the engineering field will demonstrate an understanding and philosophy that promote engineering practices founded in technical integrity, ethics, social and environmental responsibility, and global awareness. Alumni will recognize the importance of preparing themselves for continued education and independent thought.

III. Design and Teamwork
Alumni working in the engineering field will demonstrate the ability to assimilate topics from multiple sources, design a system or process, communicate that design effectively through verbal and written means, and work effectively on a team. They will also be cognizant of engineering project management. Alumni will:

1. Foster a sense of citizenship, positive group dynamics, team participation, and team responsibility in a global community and economy.
2. Demonstrate leadership where appropriate in their work groups.
3. Be able to plan, schedule, and carry out projects assigned to them.
4. Be able to work together on an interdisciplinary team such as found in the aerospace culture.
Suggested Program of Study

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEC 220</td>
<td>Digital Circuit Design</td>
<td>3</td>
</tr>
<tr>
<td>CEC 222</td>
<td>Digital Circuit Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>COM 122</td>
<td>English Composition and Literature</td>
<td>3</td>
</tr>
<tr>
<td>COM 219</td>
<td>Speech</td>
<td>3</td>
</tr>
<tr>
<td>EGR 101</td>
<td>Introduction to Engineering</td>
<td>2</td>
</tr>
<tr>
<td>EGR 115</td>
<td>Introduction to Computing for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>HU/SS</td>
<td>Lower-Level Humanities -OR- Social Sciences*</td>
<td>3</td>
</tr>
<tr>
<td>MA 241</td>
<td>Calculus and Analytical Geometry I</td>
<td>4</td>
</tr>
<tr>
<td>MA 242</td>
<td>Calculus and Analytical Geometry II</td>
<td>4</td>
</tr>
<tr>
<td>PS 150</td>
<td>Physics I for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>UNIV 101</td>
<td>College Success***</td>
<td>(1)+</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>32</td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEC 320</td>
<td>Microprocessor Systems</td>
<td>3</td>
</tr>
<tr>
<td>CEC 322</td>
<td>Microprocessor Systems Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>COM 221</td>
<td>Technical Report Writing</td>
<td>3</td>
</tr>
<tr>
<td>CS 125</td>
<td>Computer Science I</td>
<td>4</td>
</tr>
<tr>
<td>EE 223</td>
<td>Linear Circuit Analysis</td>
<td>3</td>
</tr>
<tr>
<td>EE 224</td>
<td>Electrical Engineering Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>MA 243</td>
<td>Calculus and Analytical Geometry III</td>
<td>4</td>
</tr>
<tr>
<td>MA 345</td>
<td>Differential Equations and Matrix Methods</td>
<td>4</td>
</tr>
<tr>
<td>PS 160</td>
<td>Physics II for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>PS 250</td>
<td>Physics III for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>PS 253</td>
<td>Physics Laboratory for Engineers</td>
<td>1</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>30</td>
</tr>
</tbody>
</table>

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 302</td>
<td>Electronic Devices and Circuits</td>
<td>3</td>
</tr>
<tr>
<td>EE 304</td>
<td>Electronic Circuits Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>EE 309</td>
<td>Signals and Linear Systems Analysis</td>
<td>4</td>
</tr>
<tr>
<td>EE 340</td>
<td>Electric and Magnetic Fields</td>
<td>3</td>
</tr>
<tr>
<td>EE 450</td>
<td>Power Electronics</td>
<td>3</td>
</tr>
<tr>
<td>EE 452</td>
<td>Power Electronics Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ES 207</td>
<td>Fundamentals of Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>ES 312</td>
<td>Energy Transfer Fundamentals</td>
<td>3</td>
</tr>
<tr>
<td>ES</td>
<td>Core Selection</td>
<td>3</td>
</tr>
<tr>
<td>MA</td>
<td>Math Elective (above 300-level)</td>
<td>3</td>
</tr>
<tr>
<td>MA 441</td>
<td>Advanced Engineering Mathematics I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Specified Elective++</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>33</td>
</tr>
</tbody>
</table>
ACADEMIC PROGRAMS AT THE PRESCOTT CAMPUS

SENIOR YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC 225</td>
<td>Economics</td>
<td>3</td>
</tr>
<tr>
<td>EE Advanced Elective**</td>
<td></td>
<td>6/7</td>
</tr>
<tr>
<td>EE 401</td>
<td>Control Systems Analysis and Design</td>
<td>3</td>
</tr>
<tr>
<td>EE 402</td>
<td>Control Systems Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>EE 410</td>
<td>Communication Systems</td>
<td>3</td>
</tr>
<tr>
<td>EE 412</td>
<td>Communication Systems Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>EE 420</td>
<td>Avionics Preliminary Design</td>
<td>3</td>
</tr>
<tr>
<td>EE 421</td>
<td>Avionics Detail Design</td>
<td>3</td>
</tr>
<tr>
<td>HU 330</td>
<td>Values and Ethics</td>
<td>3</td>
</tr>
<tr>
<td>Technical Elective **</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Specified Elective++</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits 32/33

TOTAL DEGREE CREDITS 127/128

Embry-Riddle courses in the general education categories of Humanities and Social Sciences may be chosen as directed below, assuming prerequisite requirements are met. Courses from other institutions are acceptable if they fall into these broad categories and are at the level specified above in the Electrical Engineering vertical outline.

Humanities

LOWER-LEVEL:
Any HU/L course under 300 level.

UPPER-LEVEL:
Any HU/L course equal to or above 300 level.

Social Sciences

LOWER-LEVEL:
Any SS/EC/PSY/RS course under 300 level.

UPPER-LEVEL:
Any SS or EC course equal to or above 300 level,
PSY 350.

SIS and RS courses may be substituted for Humanities and Social Sciences courses at the appropriate level.

** Advanced/technical electives are selected from a list provided by the department chair.

***UNIV 101 is taken in excess of degree requirements.

Core ES selection is selected from ES 206, 299, 306, 307, 399, 409, 413, 499, or AE 412, EGR 200, or EP 394.

++ Specified elective is any AE, AF, CE, CS, EE, ES, MA, MSL, PS course above 300 level, or as approved by department chair and not otherwise taken for the EE degree. Only one three-credit specified elective may come from AF or MSL.

The Electrical Engineering degree includes a space option in which EP 394, AE 427, and AE 445 substitute for the ES elective, EE 420, and EE 421.
Mechanical Engineering became a degree offering in Fall 2007. When designing this degree program our faculty wanted to ensure that we created a Mechanical Engineering degree that embraced Embry-Riddle’s mission and recognized expertise in aerospace. Aerospace platforms, whether atmosphere or space based, require skills from a team of engineers that include Aerospace, Electrical, Computer, and, of course, Mechanical Engineering. Given this, our ME degree stays within that focus of the aerospace platform with the two primary options of robotics and propulsion.

The freshman year in Mechanical Engineering is common to the Aerospace Engineering degree program. The second year in Mechanical Engineering builds fundamental skills in math and physics while introducing students to Engineering Mechanics and the Thermal Sciences. During the second semester of their sophomore year, Mechanical Engineering students in Embry-Riddle’s program in Prescott will start taking courses aligned within the focus areas of robotics or propulsion. The robotics option emphasizes the design and analysis of autonomous vehicles that include uninhabited aerial vehicles (UAVs), autonomous space vehicles, and planetary rovers. The propulsion option emphasizes the thermal sciences and design and analysis of turbomachinery. Jet aircraft engines are the primary area of depth but piston and rocket propulsion are also studied. During the senior year, students will gain additional depth in their options and take capstone courses in designing an aerospace platform.

Aerospace platforms are designed in teams and with that we provide interdisciplinary opportunities centered around our ME students. Senior ME students have the opportunity to choose between four capstone sequences as a culminating event focused on teams, integration, and synthesis of four years of education. Mechanical engineers can choose capstone sequences that include:

- Robotics sequence centered on UAVs and rovers
- Astronautics sequence centered on spacecraft
- Aeronautics sequence centered on aircraft
- Propulsion sequence centered on jet aircraft engines.

The overall objective of the Mechanical Engineering program at Prescott is to produce graduates who will be successful practitioners of mechanical engineering. The program objectives to accomplish this goal are:

I. Math, Science, and Engineering Fundamentals

Alumni working in the engineering field will demonstrate skills in math, science, and engineering with an emphasis on solving problems using fundamental engineering principles, including engineering logic, traditional analytical methods, modern software, and experimental verification of analytical methods. Additionally and more specifically:
1. Be competent in fundamental engineering areas that include statics, dynamics, solid mechanics, circuits, materials science, fluid mechanics, thermodynamics, machine design, and experimental techniques and instrumentation.

2. Use appropriate software that would enable analysis, simulation, and design of aerospace systems (for example, MATLAB, ANSYS, CATIA, etc.).

II. Social Context of Engineering Practice

Alumni working in the engineering field will demonstrate an understanding and philosophy that promotes engineering practice founded in technical integrity, ethics, social and environmental responsibility, and global awareness. Alumni will recognize the importance of preparing themselves for continued education and independent thought.

III. Design and Teamwork

Alumni working in the engineering field will demonstrate the ability to assimilate topics from multiple sources, design a system or process, communicate that design effectively though verbal and written means, and work effectively on a team. They will also be cognizant of engineering project management. Alumni will:

1. Have a broad understanding of the interrelations of the engineering disciplines and their impact on robotic and propulsion system designs.
2. Understand the importance of teamwork, the value of multiple experiences, and be able to communicate to a broad array of technical and non-technical audiences.
3. Bring design expertise to the work environment within a chosen subset of mechanical engineering disciplines.

IV. Discipline Specific Depth

Alumni working in the engineering field will demonstrate depth in their discipline and exposure in related areas. They will:

1. Have demonstrated depth in the analysis of robotic systems or turbomachinery.
2. Have depth in theoretical, computational, and experimental methods.

These objectives coupled with the common college outcomes are extensive and form the foundation of the program. We ask a lot from our students and faculty. The commitment a student makes in the program and consequently the skills they bring to the workforce are substantial and are required to be among the best in the industry.

Degree Requirements

The Bachelor of Science in Mechanical Engineering program requires successful completion of a minimum of 129 credit hours. The program may be completed in eight semesters assuming appropriate background and full-time enrollment. A minimum cumulative grade point average of 2.00 is needed for all required AE, EGR, ES, and ME courses, excluding technical electives. The courses necessary to earn this degree are listed below.

Students should be aware that many courses have prerequisites and/or corequisites. Check the course descriptions at the back of this catalog before registering for classes to ensure required sequencing. Students should note that a grade of C or better is required in MA 241, MA 242, and PS 150 for entry into ES courses and also PS 160 for entry into ME courses.
Suggested Program of Study

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEC 220</td>
<td>Digital Circuit Design</td>
<td>3</td>
</tr>
<tr>
<td>CEC 222</td>
<td>Digital Circuit Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>COM 122</td>
<td>English Composition and Literature</td>
<td>3</td>
</tr>
<tr>
<td>EC 225</td>
<td>Engineering Economics</td>
<td>3</td>
</tr>
<tr>
<td>EGR 101</td>
<td>Introduction to Engineering</td>
<td>2</td>
</tr>
<tr>
<td>HU/SS</td>
<td>Lower-Level Humanities -OR- Social Sciences*</td>
<td>3</td>
</tr>
<tr>
<td>HU 14X</td>
<td>Lower-Level Humanities</td>
<td>3</td>
</tr>
<tr>
<td>MA 241</td>
<td>Calculus and Analytical Geometry I</td>
<td>4</td>
</tr>
<tr>
<td>MA 242</td>
<td>Calculus and Analytical Geometry II</td>
<td>4</td>
</tr>
<tr>
<td>PS 150</td>
<td>Physics I for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>PS 160</td>
<td>Physics II</td>
<td>3</td>
</tr>
<tr>
<td>UNIV 101</td>
<td>College Success**</td>
<td>(1)</td>
</tr>
</tbody>
</table>

Total Credits: 32

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM 221</td>
<td>Technical Report Writing</td>
<td>3</td>
</tr>
<tr>
<td>EGR 115</td>
<td>Introduction to Computing for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>EGR 200</td>
<td>Computer-Aided Conceptual Design of Aerospace Systems</td>
<td>3</td>
</tr>
<tr>
<td>ES 201</td>
<td>Statics</td>
<td>3</td>
</tr>
<tr>
<td>ES 202</td>
<td>Solid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>ES 204</td>
<td>Dynamics (Robotics Option) -OR-</td>
<td></td>
</tr>
<tr>
<td>ES 206</td>
<td>Fluid Mechanics (Propulsion Option)</td>
<td>3</td>
</tr>
<tr>
<td>PS 105</td>
<td>General Chemistry I (Robotics Option) -OR-</td>
<td></td>
</tr>
<tr>
<td>MA 243</td>
<td>Calculus and Analytical Geometry III</td>
<td>4</td>
</tr>
<tr>
<td>MA 345</td>
<td>Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>PS 250</td>
<td>Physics III for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>PS 253</td>
<td>Physics Laboratory for Engineers</td>
<td>1</td>
</tr>
</tbody>
</table>

Total Credits (Propulsion/Robotics Options): 33/34

JUNIOR YEAR (PROPELLION OPTION)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE 430</td>
<td>Control System Analysis and Design</td>
<td>3</td>
</tr>
<tr>
<td>EE 335</td>
<td>Electrical Engineering I</td>
<td>2</td>
</tr>
<tr>
<td>EE 336</td>
<td>Electrical Engineering I Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ES 204</td>
<td>Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>ES 320</td>
<td>Engineering Material Science Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>MA 404</td>
<td>Machanectronics</td>
<td>3</td>
</tr>
<tr>
<td>ME 404L</td>
<td>Mechatronics Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ME 417</td>
<td>Advanced Propulsion</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits: 32

JUNIOR YEAR (ROBOTICS OPTION)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE 430</td>
<td>Control System Analysis and Design</td>
<td>3</td>
</tr>
<tr>
<td>EE 335</td>
<td>Electrical Engineering I</td>
<td>2</td>
</tr>
<tr>
<td>EE 336</td>
<td>Electrical Engineering I Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ES 204</td>
<td>Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>ES 320</td>
<td>Engineering Material Science Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>MA 404</td>
<td>Machanectronics</td>
<td>3</td>
</tr>
<tr>
<td>ME 404L</td>
<td>Mechatronics Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ME 417</td>
<td>Advanced Propulsion</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits: 32

SENIOR YEAR (PROPELLION OPTION)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE 430</td>
<td>Control System Analysis and Design</td>
<td>3</td>
</tr>
<tr>
<td>EE 335</td>
<td>Electrical Engineering I</td>
<td>2</td>
</tr>
<tr>
<td>EE 336</td>
<td>Electrical Engineering I Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ES 204</td>
<td>Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>ES 320</td>
<td>Engineering Material Science Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>MA 404</td>
<td>Machanectronics</td>
<td>3</td>
</tr>
<tr>
<td>ME 404L</td>
<td>Mechatronics Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ME 417</td>
<td>Advanced Propulsion</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits: 32

SENIOR YEAR (ROBOTICS OPTION)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM 420</td>
<td>ADV Technical Communications I</td>
<td>1</td>
</tr>
<tr>
<td>COM 430</td>
<td>ADV Technical Communications II</td>
<td>2</td>
</tr>
<tr>
<td>ES 403</td>
<td>Heat Transfer</td>
<td>3</td>
</tr>
<tr>
<td>MA 412</td>
<td>Probability and Statistics</td>
<td>3</td>
</tr>
<tr>
<td>ME 400</td>
<td>Vibration and Acoustics</td>
<td>3</td>
</tr>
<tr>
<td>ME 403</td>
<td>Thermal Power Systems</td>
<td>3</td>
</tr>
<tr>
<td>ME 406</td>
<td>Robotics II</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits: 32
Academic Programs at the Prescott Campus

ME 406L Robotics II Laboratory 1
Technical Electives 3
Preliminary Design 4
Detail Design 4
Total Credits 30
TOTAL DEGREE CREDITS 129

Capstone Design Sequence, Preliminary and Detail Design
ME students have four possible sequences for their capstone sequence:

Astronautics
Students taking the Spacecraft capstone sequence are required to take:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE 427</td>
<td>Spacecraft Preliminary Design</td>
<td>4</td>
</tr>
<tr>
<td>AE 445</td>
<td>Spacecraft Detail Design</td>
<td>4</td>
</tr>
</tbody>
</table>

Aeronautics
Students taking the Aircraft capstone sequence are required to take:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE 420</td>
<td>Aircraft Preliminary Design</td>
<td>4</td>
</tr>
<tr>
<td>AE 421</td>
<td>Aircraft Detail Design</td>
<td>4</td>
</tr>
</tbody>
</table>

Propulsion
Students taking the Propulsion capstone sequence are required to take:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 429</td>
<td>Propulsion System Preliminary Design</td>
<td>4</td>
</tr>
<tr>
<td>ME 431</td>
<td>Propulsion System Detail Design</td>
<td>4</td>
</tr>
</tbody>
</table>

Robotics
Students taking the Robotics capstone sequence are required to take:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 407</td>
<td>Preliminary Design of Robotic Systems</td>
<td>4</td>
</tr>
<tr>
<td>ME 420</td>
<td>Detail Design of Robotic Systems with Laboratory</td>
<td>4</td>
</tr>
</tbody>
</table>

Technical Electives:
- AE: Upper-level, except 399††, 499††
- CEAE, CEME: With prior approval of the Mechanical Engineering Department
- CEC: Upper level, except 399††, 499††
- CS: 325, 335, 350, 420
- EE: Upper level, except 399††, 499††
- EGR: Upper level
- EP: Upper level, except 399††, 499††
- ES: Upper level, except 399††, 499††
- MA: 432, 438, 441, 442, 443
- ME: Upper-level, except 399††, 499††
- PS: 303, 321, 322, 350, 375, 420
- SE: 300

†† Must be approved by the Aerospace Engineering Department before taking this course.

Three credit hours of technical elective credit must be taken from available upper-level College of Engineering courses not specifically listed in the student’s degree requirements. The remaining two credit hours must be selected from the list above or an upper-level ROTC course may be substituted.

General Education Electives

- Embry-Riddle courses in the general education categories of Humanities and Social Sciences may be chosen as specified below, assuming prerequisite requirements are met. Courses from other institutions are acceptable if they fall into these broad categories and are at the level specified above in the Mechanical Engineering vertical outline.

Humanities

- LOWER-LEVEL:
 - Any HU/H course under 300 level.
- UPPER-LEVEL:
 - HU 330 or HU 399/SS 399 - Study Abroad

Social Sciences

- LOWER-LEVEL:
 - Any EC/SS/PSY/RS course under 300 level.

Prior approval by the Mechanical Engineering Department chair is required for any substitutions for general education electives.

- UNIV 101 is taken in excess of degree requirements.
- EE 223/224 may be substituted for EE 335/336.
Minor Courses of Study

Minor courses of study are academic programs designed to satisfy a student’s personal interests and to meet their professional needs. Students explore, in some depth, the offerings in a field of study. A minor provides the student with significant experience in a discipline organized around skills, methodology, and subject matter. To gain the greatest value from their academic experiences, students are encouraged to select minors that complement their degree program and/or other minors they are pursuing. Designed to include a minimum number of required courses, minors provide students, whenever possible, with flexibility in fulfilling program requirements.

- A minor must be in a discipline outside the student’s major field of study.
- A minor consists of 15 semester hours of related courses, of which at least six hours must be completed in residence at Embry-Riddle. A minor must have at least six credits hours in the discipline from courses that are not specifically required in the student’s degree program. It includes six hours of upper-division hours; at least three of these must be completed in residence.
- Students should declare their minors as soon as possible, before the beginning of the senior year, by submitting an Official Declaration form approved and signed by their academic advisor.
- Minor requirements are subject to the catalog in effect at the time it is officially declared.
- Students must earn a minimum GPA of 2.00 based on all courses in the minor.
- Courses cannot be shared between minors and no more than two substitutions are permitted in any one minor or in any combination of multiple minors. Substitutions must be approved by the department offering the minor.

In addition to the standard minors described in this catalog, students may earn an interdisciplinary minor by completing required courses approved by the Department Chair and the Dean of the college offering the minor. No substitutions are allowed in the interdisciplinary minor. A new form must be submitted with the appropriate signatures to make changes. Please see your academic advisor or the Records Office for more information.

The following standard minors are offered at the Prescott Campus.

- Aeronautical Studies
- Air Traffic Control
- Applied Meteorology
- Arabic and Middle Eastern Studies
- Asian Studies
- Aviation Safety
- Business Administration
- Computer Science
- Computer Security
- Electrical Engineering
- Environmental Studies
- Flight
- Helicopter Flight
- Helicopter Operations & Safety
- Humanities
- Mandarin Chinese
- Mathematics
- Psychology
- Security Studies
- Technical Intelligence
Minor in Aeronautical Studies

This minor gives students increased exposure to advanced aviation knowledge by taking a sequence of 18 hours of mostly upper-level Aeronautical Science courses. No more than nine of the 18 hours required for this minor can come from courses required for the student’s degree. The minor is not open to students pursuing a degree in Aeronautical Science or Aeronautics programs. A minor in Aeronautical Studies can be earned by successfully completing six of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS 254</td>
<td>Aviation Legislation</td>
<td>3</td>
</tr>
<tr>
<td>AS 309</td>
<td>Aerodynamics</td>
<td>3</td>
</tr>
<tr>
<td>AS 310</td>
<td>Aircraft Performance</td>
<td>3</td>
</tr>
<tr>
<td>AS 311</td>
<td>Aircraft Engines - Turbine</td>
<td>3</td>
</tr>
<tr>
<td>AS 356</td>
<td>Aircraft Systems and Components</td>
<td>3</td>
</tr>
<tr>
<td>AS 357</td>
<td>Flight Physiology</td>
<td>3</td>
</tr>
<tr>
<td>AS 350</td>
<td>Domestic and International Navigation</td>
<td>3</td>
</tr>
<tr>
<td>AS 402</td>
<td>Airline Operations</td>
<td>3</td>
</tr>
<tr>
<td>AS 405</td>
<td>Aviation Law</td>
<td>3</td>
</tr>
<tr>
<td>AS 408</td>
<td>Flight Safety</td>
<td>3</td>
</tr>
<tr>
<td>AS 410</td>
<td>Airline Dispatch Operations</td>
<td>3</td>
</tr>
<tr>
<td>AS 411</td>
<td>Jet Transport Systems</td>
<td>3</td>
</tr>
<tr>
<td>AS 420</td>
<td>Flight Technique Analysis</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits Required 18

Minor in Air Traffic Control

The Air Traffic Control (ATC) minor provides the fundamental traffic controller knowledge and technical competency through a mix of classroom instruction, computer-based instruction, and realistic ATC laboratory simulations.

Embry-Riddle has a formal partnership agreement with the FAA that designates the University as an FAA-approved air traffic control training school. This partnership ensures that the learning objectives and the standards of student achievement are relevant to the needs of the FAA.

The FAA has stipulated that only students enrolled in certain aviation degree programs are eligible for entry into the Air Traffic Control (ATC) Collegiate Training Initiative (CTI) program. Although students from any degree program may declare and earn a minor in ATC, eligibility for the CTI program is more restrictive.*

Students wishing to declare ATC as a minor must receive approval of the Chair of the Aeronautical Science department.

To earn a minor in Air Traffic Control, students must successfully complete the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT 200</td>
<td>Air Traffic Management I</td>
<td>3</td>
</tr>
<tr>
<td>AT 305</td>
<td>Air Traffic Management III</td>
<td>3</td>
</tr>
<tr>
<td>AT 401</td>
<td>Air Traffic Management IV</td>
<td>3</td>
</tr>
<tr>
<td>AT 405</td>
<td>Air Traffic Management V</td>
<td>3</td>
</tr>
<tr>
<td>WX 201</td>
<td>Survey of Meteorology</td>
<td>3</td>
</tr>
</tbody>
</table>

AND

One of the following is required:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS 119</td>
<td>Private Pilot Operations</td>
<td>4</td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AS 120</td>
<td>Principles of Aeronautical Science</td>
<td>3</td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAA</td>
<td>Private Pilot Certificate</td>
<td>1</td>
</tr>
</tbody>
</table>

Total Credits Required 16-19

*Although AT 302 is not required for the ATC minor, those students who wish to be eligible for the CTI program must also take AT 302.

Minor in Applied Meteorology

The minor in Applied Meteorology introduces the student with an interest in weather to the intriguing world of meteorology. The minor requires nine hours of WX courses beyond the two required courses, WX 201 and WX 301, a total of 15 hours of WX courses. Six hours of these classes must be higher numbered classes than WX 301. Always check the catalog course descriptions for prerequisites.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>WX 201</td>
<td>Survey of Meteorology</td>
<td>3</td>
</tr>
<tr>
<td>WX 301</td>
<td>Aviation Weather</td>
<td>3</td>
</tr>
</tbody>
</table>

Recommended Electives for flight students:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>WX 261</td>
<td>Applied Climatology</td>
<td>3</td>
</tr>
</tbody>
</table>
Minor Courses of Study

WX 363 Thunderstorms .. 3
WX 364 Weather for Aircrews 3
WX 365 Satellite and Radar Weather
 Interpretation .. 3
 Or any combination of WX courses 9

Total Credits Required 15

Note: Non-aviation students may take WX 252 in lieu of
WX 201 and WX 301 plus another 12 hours of Weather (WX)
courses. Six hours of upper-level courses are required for a
minor.

Minor in Arabic and Middle Eastern Studies

The Arabic and Middle Eastern Studies
Minor introduces the student to the cultures, histories, and languages of Arab countries. A
student can earn this minor by successfully completing at least 18 related credit hours,
with six upper-level credits in Middle Eastern Studies in residence at Embry-Riddle. These
credits can be chosen from the following options.

 Option I: Courses may be chosen from
 the list of Arabic language and Middle
 Eastern Studies.

 Option II: May apply transfer credits in
 Arabic language and area studies for a minor
 in Arabic and Middle Eastern Studies with
departmental approval. Six credits must be
taken at Embry-Riddle.

Course Title Credits
LAR 101 Arabic I ... 3
LAR 102 Arabic II ... 3
LAR 201 Arabic III ... 3
LAR 202 Arabic IV ... 3
RS 306 Studies in Middle Eastern History
 & Cultures .. 3
RS 307 Islam and Arabic Culture 3
 -OR-
RS 399 Directed Studies 3

Total Credits Required 18

Minor in Asian Studies

The Asian Studies minor introduces a stu-
dent to the cultures, histories, and languages
of Asian countries, as well as cross-cultural
comparisons between the U.S. and Asia. Any
student can earn the minor by successfully
completing at least 15 related credit hours,
including six upper-level credits in Asian
Studies earned at Embry-Riddle. These 15
credits can be earned from the following options:

 Option I: Choose courses from the list of
 Asian Studies courses.

 Option II: Transfer up to nine credits in
 an Asian language or from Asian Studies
 courses or study abroad, and earn at least
 six upper-level Asian Studies credits from
 Embry-Riddle.

Course Title Credits
LCH 101 Mandarin Chinese I 3
LCH 102 Mandarin Chinese II 3
LCH 199 Special Topics in Lower-Level
 Chinese Language ..
-OR-
LCH 201 Mandarin Chinese III 3
LCH 202 Mandarin Chinese IV 3
Upper Level Courses:
RS 300 Observing Asian Cultures* 3
RS 305 Asian Literature 3

Total Credits Required 15

*NOTE: This course is only offered every other year.

Minor in Aviation Safety

Students may earn a minor in Aviation Safety
by successfully completing the core along
with 9 credit hours selected from the elective
list below.

CORE:

Course Title Credits
SF 210* Introduction to Aerospace Safety
 -OR-
SF 201 Introduction to Health, Occupational,
 and Transportation Safety 3
SF 320 Human Factors in Aviation Safety 3

AND any three of the following electives:

Course Title Credits
SF 330 Aircraft Accident Investigation 3
SF 335 Mechanical and Structural Factors
 in Aviation Safety 3
SF 341 Safety and Security of Airport Ground
 Operations .. 3

—— 154 ——
Minor Courses of Study

Minor in Business Administration

Students may earn a minor in Business Administration by successfully completing the following. This minor is not open to students pursuing the Aviation Business Administration degree.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA 201</td>
<td>Principles of Management</td>
<td>3</td>
</tr>
<tr>
<td>EC 210</td>
<td>Microeconomics</td>
<td></td>
</tr>
<tr>
<td>-OR-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC 211</td>
<td>Macroeconomics</td>
<td>3</td>
</tr>
<tr>
<td>BA 210</td>
<td>Financial Accounting</td>
<td>3</td>
</tr>
<tr>
<td>BA 311</td>
<td>Marketing</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits Required: 15

Specified Electives

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA 308</td>
<td>Public Administration</td>
<td>3</td>
</tr>
<tr>
<td>BA 319</td>
<td>Managerial and Organizational Behavior</td>
<td>3</td>
</tr>
<tr>
<td>BA 320</td>
<td>Business Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>BA 322</td>
<td>Airplane Insurance</td>
<td>3</td>
</tr>
<tr>
<td>BA 324</td>
<td>Aviation Labor Relations</td>
<td>3</td>
</tr>
<tr>
<td>BA 332</td>
<td>Corporate Finance</td>
<td>3</td>
</tr>
<tr>
<td>BA 333</td>
<td>Personal Financial Planning</td>
<td>3</td>
</tr>
<tr>
<td>BA 335</td>
<td>International Business</td>
<td>3</td>
</tr>
<tr>
<td>BA 342</td>
<td>International Finance</td>
<td>3</td>
</tr>
<tr>
<td>BA 408</td>
<td>Airport Management</td>
<td>3</td>
</tr>
<tr>
<td>BA 410</td>
<td>Management of Air Cargo</td>
<td>3</td>
</tr>
<tr>
<td>BA 415</td>
<td>Airline Management</td>
<td>3</td>
</tr>
<tr>
<td>BA 418</td>
<td>Airport Administration and Finance</td>
<td>3</td>
</tr>
<tr>
<td>BA 421</td>
<td>Small Business Management</td>
<td>3</td>
</tr>
<tr>
<td>EC 225</td>
<td>Engineering Economics</td>
<td>3</td>
</tr>
<tr>
<td>EC 312</td>
<td>Money and Banking</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits Required: 18

*Other substitutions for Specified Electives may be approved by the Business Department Chair.

Minor in Computer Science

Students may earn a minor in Computer Science by successfully completing the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 125</td>
<td>Computer Science I</td>
<td>4</td>
</tr>
<tr>
<td>CS 225</td>
<td>Computer Science II</td>
<td>4</td>
</tr>
<tr>
<td>SE 300</td>
<td>Software Engineering Practices</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits Required: 15

Upper Level CS/SE/CEC Electives

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES 405</td>
<td>or any computer-related course approved by the Mathematics and Computer Science Department</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits Required: 6

*In addition to any 300-400 level CS/SE/CEC electives, students may take ES 405 or any computer-related course approved by the Mathematics and Computer Science Department.

Minor in Computer Security

The minor in Computer Security is intended to provide an introduction to the technologies, issues, and limitations of Computer Security in the context of both computer science and information security in general. The minor consists of the six courses shown below. Students with prior programming experience are encouraged to customize this minor by proposing other technical courses in place of all or part of the lower-division sequence of EGR 115 followed by CS 225.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGR 115</td>
<td>Introduction for Computing for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>CS 225</td>
<td>Computer Science II</td>
<td>4</td>
</tr>
<tr>
<td>CS 303</td>
<td>Network Security</td>
<td>3</td>
</tr>
<tr>
<td>CS 305</td>
<td>Database Systems and Data Mining</td>
<td>3</td>
</tr>
<tr>
<td>CS 420</td>
<td>Operating Systems</td>
<td>3</td>
</tr>
<tr>
<td>CS 432</td>
<td>Information and Computer Security</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits Required: 19
Minor Courses of Study

Minor in Electrical Engineering
This minor will provide knowledge of analog or digital electronics and its application to the fields of aerospace and mechanical engineering. Not open to Electrical Engineering students.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 223</td>
<td>Linear Circuit Analysis I</td>
<td>3</td>
</tr>
<tr>
<td>EE 224</td>
<td>Electrical Engineering Laboratory I</td>
<td>1</td>
</tr>
<tr>
<td>EE 309</td>
<td>Signal and Linear System Analysis</td>
<td>4</td>
</tr>
</tbody>
</table>

Select either the Digital or Analog option:

Digital Option

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 125</td>
<td>Computer Science I</td>
<td>4</td>
</tr>
<tr>
<td>CEC 320</td>
<td>Microprocessor Systems</td>
<td>3</td>
</tr>
<tr>
<td>CEC 322</td>
<td>Microprocessor Systems Laboratory</td>
<td>1</td>
</tr>
</tbody>
</table>

Analog Option

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 302</td>
<td>Electronic Devices and Circuits</td>
<td>3</td>
</tr>
<tr>
<td>EE 304</td>
<td>Electronic Circuits Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>4XX</td>
<td>Elective and Laboratory</td>
<td>4</td>
</tr>
</tbody>
</table>

Total Credits Required 16

Minor in Environmental Studies
This course sequence is an interdisciplinary program designed to provide a fundamental knowledge of the natural environment and the dimensions of human impacts. It provides in-depth analysis of the relationship between the environment, culture, and law. Furthermore, it supplies knowledge about major environmental issues surrounding technology and technical careers. Not open to Aviation Environmental Science students.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS 107</td>
<td>Elements of Biological Science</td>
<td>3</td>
</tr>
<tr>
<td>PS 101</td>
<td>Basic Chemistry</td>
<td></td>
</tr>
<tr>
<td>PS 105</td>
<td>General Chemistry I</td>
<td></td>
</tr>
<tr>
<td>PS 108</td>
<td>Contemporary Chemistry</td>
<td></td>
</tr>
<tr>
<td>PS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AES 142</td>
<td>Introduction to Environmental Science</td>
<td></td>
</tr>
<tr>
<td>AES 304</td>
<td>Environmental Science</td>
<td></td>
</tr>
<tr>
<td>AES 309</td>
<td>Principles of Ecology</td>
<td>3</td>
</tr>
<tr>
<td>SS 360</td>
<td>Environmental Law</td>
<td></td>
</tr>
<tr>
<td>COM350</td>
<td>Environmental Communication</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits Required 15-16

Minor in Flight
The Flight minor incorporates the courses required to obtain the FAA commercial pilot certificate with instrument and multi-engine ratings. In addition to the required flight courses, rigorous academic classes are included to provide professional pilot education in excess of the minimum FAA requirements for the associated FAA certificates. Included is instruction in CRM, team building, resource management, communication skills, and other topics associated with piloting multi-engine aircraft at the commercial level.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS 119</td>
<td>Private Pilot Operations</td>
<td>4</td>
</tr>
<tr>
<td>AS 221</td>
<td>Instrument Pilot Operations</td>
<td>3</td>
</tr>
<tr>
<td>AS 321</td>
<td>Commercial Pilot Operations</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Upper-Level AS Course</td>
<td>3</td>
</tr>
</tbody>
</table>

FLIGHT TRACK*

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA 119</td>
<td>Private Single Flight</td>
<td>1</td>
</tr>
<tr>
<td>FA 221</td>
<td>Instrument Single Flight</td>
<td>1</td>
</tr>
<tr>
<td>FA 321</td>
<td>Commercial Single Flight</td>
<td>1</td>
</tr>
<tr>
<td>FA 323</td>
<td>Commercial Multi Add On</td>
<td>1</td>
</tr>
</tbody>
</table>

Total Credits Required 17

*See the Advanced Standing section in the University Academic Regulations and Procedures and the Aeronautical Science Notes under the Aeronautical Science degree sections of this catalog for information pertaining to these courses and the awarding of credit for previously earned FAA certificates.

Minor in Helicopter Flight
This minor incorporates courses required to obtain the FAA private and commercial pilot
certificates and either the helicopter instrument rating or the helicopter flight instructor certificate. Rigorous academic classes are included to provide professional pilot education. Included is instruction in resource management, high-altitude helicopter operations, and other topics associated with piloting helicopters at the commercial level. All helicopter flight activities must be completed with the approved University provider.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS</td>
<td>142 Private Helicopter Operations</td>
<td>3</td>
</tr>
<tr>
<td>AS</td>
<td>252 Instrument Helicopter Operations</td>
<td>3</td>
</tr>
<tr>
<td>AS</td>
<td>372 Commercial Helicopter Operations</td>
<td>3</td>
</tr>
<tr>
<td>FH</td>
<td>142 Helicopter Pilot Flight Private</td>
<td>1</td>
</tr>
<tr>
<td>FH</td>
<td>252 Helicopter Pilot Flight Instrument</td>
<td>1</td>
</tr>
<tr>
<td>FH</td>
<td>372 Helicopter Pilot Flight Commercial</td>
<td>1</td>
</tr>
<tr>
<td>AS</td>
<td>442 Flight Instructor Helicopter Operations</td>
<td>4</td>
</tr>
</tbody>
</table>

-AND-

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FH</td>
<td>442 Helicopter Pilot Flight Instructor</td>
<td>1</td>
</tr>
</tbody>
</table>

-OR-

Any upper-level (300/400) AS, SF, or WX course . . . 3

Total Credits Required 15/17

Minor in Helicopter Operations and Safety

This minor was developed with and for the helicopter industry. Students will develop an understanding of aviation safety, maintenance, personnel management and training, and operations management programs in use by the government and civil aviation. Additionally, learning about advanced technology used in the industry is an integral part of this program. This minor coincides with the Helicopter Flight Minor as a capstone program. Students declaring this minor must be FAA licensed helicopter pilots. A minor in Helicopter Operations and Safety can be earned by successfully completing all of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SF</td>
<td>210 Introduction to Aerospace Safety</td>
<td>3</td>
</tr>
<tr>
<td>SF</td>
<td>345 Safety Program Management</td>
<td>3</td>
</tr>
</tbody>
</table>

AS	378 Environmental Helicopter Operations	. . . 3
AS	388 Helicopter Flight Planning	. . . 3
AS	428 FMS/Autopilots for Helicopters	. . . 3
AS	438 Advanced Helicopter Operations	. . . 3

Total Credits Required 15/17

Minor in Humanities

Students may earn a minor in Humanities by successfully completing 18 hours. Within those 18 hours, students must select two courses from the HU 140-146 series for a subtotal of six credits.

Additionally, students must complete one or more courses selected from each of the lists below for a subtotal of 12 credits.

NARRATIVE

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HU</td>
<td>300 World Literature</td>
<td>. . . 3</td>
</tr>
<tr>
<td>HU</td>
<td>305 Modern Literature</td>
<td>. . . 3</td>
</tr>
<tr>
<td>HU</td>
<td>310 American Literature</td>
<td>. . . 3</td>
</tr>
<tr>
<td>HU</td>
<td>325 Exploring Film</td>
<td>. . . 3</td>
</tr>
</tbody>
</table>

SPECULATIVE

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HU</td>
<td>330 Values and Ethics</td>
<td>. . . 3</td>
</tr>
<tr>
<td>HU</td>
<td>335 Technology and Modern Civilization</td>
<td>. . . 3</td>
</tr>
<tr>
<td>HU</td>
<td>341 World Philosophy</td>
<td>. . . 3</td>
</tr>
</tbody>
</table>

RELIGION AND FINE ARTS

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HU</td>
<td>320 Aesthetics of Visual and Musical Arts</td>
<td>. . . 3</td>
</tr>
<tr>
<td>HU</td>
<td>345 Comparative Religions</td>
<td>. . . 3</td>
</tr>
<tr>
<td>HU</td>
<td>355 Creative Writing</td>
<td>. . . 3</td>
</tr>
</tbody>
</table>

Total Credits Required 18

HU 399/HU 499, Special Topics in Humanities, may be included with advance permission of the department chair.

Minor in Mandarin Chinese

The Mandarin Chinese Language minor prepares students for intermediate proficiency in the languages defined by the American Council of Teachers of Foreign Languages and the Interagency Language Roundtable. Any student can earn this minor by success-
fully completing 15 credit hours, with at least three lower-level and three upper-level credits earned at Embry-Riddle. These 15 credits can be earned from the following options:

Option 1:
Take courses from the following list, provided that a student is not using the same course for the Asian Studies Minor.

Option 2:
Pass Embry-Riddle course equivalency tests for up to 9 credits (provided that a student is not using the course equivalency test for credits in the Asian Studies Minor), and earn 6 credits at the upper level from the following list.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCH 201</td>
<td>Mandarin Chinese III</td>
<td>3</td>
</tr>
<tr>
<td>LCH 202</td>
<td>Mandarin Chinese IV</td>
<td>3</td>
</tr>
<tr>
<td>LCH 301</td>
<td>Intermediate Chinese I</td>
<td>3</td>
</tr>
<tr>
<td>LCH 302</td>
<td>Intermediate Chinese II</td>
<td>3</td>
</tr>
<tr>
<td>LCH 205</td>
<td>Modern Chinese Films</td>
<td>3</td>
</tr>
</tbody>
</table>

-OR-

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCH 399</td>
<td>Special Topics in Chinese Language</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits Required 15

Minor in Mathematics

Students may earn a minor in Mathematics by completing the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA 241</td>
<td>Calculus and Analytic Geometry I</td>
<td>4</td>
</tr>
<tr>
<td>MA 242</td>
<td>Calculus and Analytic Geometry II</td>
<td>4</td>
</tr>
<tr>
<td>MA 243</td>
<td>Calculus and Analytic Geometry III</td>
<td>4</td>
</tr>
<tr>
<td>MA 245</td>
<td>Applied Differential Equations</td>
<td>3</td>
</tr>
</tbody>
</table>

-OR-

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA 345</td>
<td>Differential Equations and Matrix Methods</td>
<td>4</td>
</tr>
<tr>
<td>MA 346</td>
<td>Electives (approved by department chair)</td>
<td>5-6</td>
</tr>
</tbody>
</table>

Total Credits Required 21

Minor in Psychology

Students may earn a minor in Psychology by successfully completing the three specified courses and an additional two courses from the following list, totaling 15 credit hours.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSY 101</td>
<td>Introduction to Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSY 350</td>
<td>Social Psychology</td>
<td>3</td>
</tr>
</tbody>
</table>

-AND-

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF 201</td>
<td>Introduction to Human Factors</td>
<td>3</td>
</tr>
<tr>
<td>HF 210</td>
<td>Human Factors I: Principles and Fundamentals</td>
<td>3</td>
</tr>
</tbody>
</table>

Two of the following courses are also required:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA 317</td>
<td>Organizational Behavior</td>
<td>3</td>
</tr>
<tr>
<td>HU 361</td>
<td>Interpersonal Communication</td>
<td>3</td>
</tr>
<tr>
<td>HU 363</td>
<td>Communication and Society</td>
<td>3</td>
</tr>
<tr>
<td>PSY 310</td>
<td>Sensation and Perception</td>
<td>3</td>
</tr>
<tr>
<td>PSY 315</td>
<td>Cognitive Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSY 320</td>
<td>Aviation Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSY 335</td>
<td>Physiological Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSY 340</td>
<td>Industrial-Organizational Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSY 345</td>
<td>Training and Development</td>
<td>3</td>
</tr>
<tr>
<td>PSY 400</td>
<td>Introduction to Cognitive Science</td>
<td>3</td>
</tr>
<tr>
<td>SS 312</td>
<td>Personality and Profiling</td>
<td>3</td>
</tr>
<tr>
<td>SS 350</td>
<td>Psychology of Relationships</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits Required 15

Three credits of HF 299, 399, or 499 or PSY 299, 399, or 499 (Special Topics in Psychology) may be substituted with advance permission of the department chair.

Minor in Security Studies

This course sequence has the goal of enhancing students' knowledge and employability by giving them an understanding of basic principles of and issues in the process of policy-making; in-depth analysis of the relationships between security and globalization; and advanced knowledge of intelligence and criminal justice systems around the globe. Not open to Global Security and Intelligence Studies students.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 327</td>
<td>International Relations</td>
<td>3</td>
</tr>
<tr>
<td>SIS 317</td>
<td>Political Change, Revolution, and War</td>
<td>3</td>
</tr>
<tr>
<td>SS 340</td>
<td>U.S. Foreign Policy</td>
<td>3</td>
</tr>
</tbody>
</table>
Two courses selected from the following list:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIS 312</td>
<td>Global Crime and International Justice System</td>
<td>3</td>
</tr>
<tr>
<td>SIS 315</td>
<td>Studies in Global Intelligence I</td>
<td>3</td>
</tr>
<tr>
<td>SIS 400</td>
<td>International Security and Globalization</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits Required</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Minor in Technical Intelligence

This minor is primarily aimed at students in the Space Physics and Engineering programs with an interest in intelligence applications. The minor is also accessible to motivated students in the Global Security and Intelligence Studies program. This course of study emphasizes the global aspects of technical intelligence gathering and reviews the technologies involved. The minor will prepare students to work in intelligence-gathering fields and research.

Required Courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS 330</td>
<td>Electricity and Magnetism I</td>
<td>3</td>
</tr>
<tr>
<td>PS 420</td>
<td>Remote Sensing</td>
<td></td>
</tr>
<tr>
<td>-OR-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS 490</td>
<td>Senior Research Thesis, Part I</td>
<td>3</td>
</tr>
<tr>
<td>SIS 315</td>
<td>Studies in Global Intelligence I</td>
<td>3</td>
</tr>
<tr>
<td>SIS 323</td>
<td>Intelligence and Technology</td>
<td></td>
</tr>
<tr>
<td>-OR-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIS 400</td>
<td>International Security and Globalization</td>
<td>3</td>
</tr>
<tr>
<td>-AND-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Students must choose three of the following:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS 221</td>
<td>Intermediate Physics Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>PS 331</td>
<td>Electricity and Magnetism II</td>
<td>3</td>
</tr>
<tr>
<td>SIS 400</td>
<td>International Security and Globalization</td>
<td>3</td>
</tr>
<tr>
<td>SIS 405</td>
<td>Environment and Security</td>
<td>3</td>
</tr>
<tr>
<td>SS 327</td>
<td>International Relations</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits Required</td>
<td></td>
<td>20/21</td>
</tr>
</tbody>
</table>
UNDERGRADUATE COURSE DESCRIPTIONS

Embry-Riddle Aeronautical University course offerings at the Prescott campus are listed in alphabetical order, according to the course designations below.

<table>
<thead>
<tr>
<th>Designation</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE</td>
<td>Aerospace Engineering</td>
</tr>
<tr>
<td>AES</td>
<td>Aviation Environmental</td>
</tr>
<tr>
<td>AF</td>
<td>Air Force Aerospace Studies</td>
</tr>
<tr>
<td>AS</td>
<td>Aeronautical Science</td>
</tr>
<tr>
<td>AT</td>
<td>Air Traffic Control</td>
</tr>
<tr>
<td>BA</td>
<td>Business Administration</td>
</tr>
<tr>
<td>CE</td>
<td>Cooperative Education</td>
</tr>
<tr>
<td>CEC</td>
<td>Computer Engineering</td>
</tr>
<tr>
<td>COM</td>
<td>Communication</td>
</tr>
<tr>
<td>CS</td>
<td>Computer Science</td>
</tr>
<tr>
<td>EC</td>
<td>Economics</td>
</tr>
<tr>
<td>EE</td>
<td>Electrical Engineering</td>
</tr>
<tr>
<td>EGR</td>
<td>Engineering</td>
</tr>
<tr>
<td>EP</td>
<td>Engineering Physics</td>
</tr>
<tr>
<td>ES</td>
<td>Engineering Science</td>
</tr>
<tr>
<td>FA</td>
<td>Flight-Airplane</td>
</tr>
<tr>
<td>FH</td>
<td>Flight-Helicopter</td>
</tr>
<tr>
<td>HON</td>
<td>Honors</td>
</tr>
<tr>
<td>HU</td>
<td>Humanities</td>
</tr>
<tr>
<td>IS</td>
<td>Interdisciplinary Studies</td>
</tr>
<tr>
<td>IT</td>
<td>Information Technology</td>
</tr>
<tr>
<td>L</td>
<td>Languages</td>
</tr>
<tr>
<td>MA</td>
<td>Mathematics</td>
</tr>
<tr>
<td>ME</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>MSL</td>
<td>Military Science and Leadership</td>
</tr>
<tr>
<td>PS</td>
<td>Physical Science</td>
</tr>
<tr>
<td>PSY</td>
<td>Psychology</td>
</tr>
<tr>
<td>RS</td>
<td>Regional Studies</td>
</tr>
<tr>
<td>SE</td>
<td>Software Engineering</td>
</tr>
<tr>
<td>SF</td>
<td>Safety Science</td>
</tr>
<tr>
<td>SIS</td>
<td>Global Security and Intelligence Studies</td>
</tr>
<tr>
<td>SS</td>
<td>Social Sciences</td>
</tr>
<tr>
<td>UNIV</td>
<td>College Success</td>
</tr>
<tr>
<td>WX</td>
<td>Applied Meteorology</td>
</tr>
</tbody>
</table>

Courses numbered 001–099 are basic skills courses and do not apply toward degree requirements. Courses numbered 100–299 are lower-division courses and are generally taken in the freshman and sophomore years. Many lower-division courses serve as prerequisites for other coursework, so students are urged to plan ahead to meet necessary prerequisites. Courses numbered 300–499 are upper-division courses, reflecting advanced levels of technical skills and disciplinary knowledge. Upper-division work is generally taken in the junior and senior years. Only the dean of a college, or an appointed designee, may waive corequisite and prerequisite requirements. The University reserves the right to administratively drop a student from a course in which prerequisite or corequisite requirements have not been met.

Course numbers ending in 95 designate time-limited offerings, such as those taught by a visiting lecturer. Course numbers ending in 96 or 97 identify special sequential courses. Those ending in 98 provide students with a unique, collective program of learning activities supervised by a professor. Courses ending in 99 denote individual study between professor and student.

Numbers in parentheses, immediately following course titles and numbers, indicate lecture and laboratory hours that a class meets each week. For example, (3,3) signifies that the course consists of three lecture hours and three laboratory hours weekly.

The following courses are not necessarily offered every term, nor are they offered at all campus locations.
Undergraduate Course Descriptions

Aerospace Engineering

A grade of C or better is required in MA 241, MA 242, and either PS 150 and PS 160 or PS 215, PS 216, and PS 208 for entry into all AE courses. A passing grade in all prerequisite courses or department consent is required for entry into all AE courses.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
<th>Prerequisites/Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE 301</td>
<td>Aerodynamics I</td>
<td>3</td>
<td>ES 206, MA 243</td>
</tr>
<tr>
<td>AE 302</td>
<td>Aerodynamics II</td>
<td>3</td>
<td>AE 301, ES 305</td>
</tr>
<tr>
<td>AE 313</td>
<td>Space Mechanics</td>
<td>3</td>
<td>AE 301, ES 305</td>
</tr>
<tr>
<td>AE 314</td>
<td>Experimental Aerodynamics</td>
<td>1</td>
<td>COM 221, AE 302</td>
</tr>
<tr>
<td>AE 315</td>
<td>Experimental Aerodynamics Laboratory</td>
<td>0.3</td>
<td>COM 221, AE 302</td>
</tr>
<tr>
<td>AE 318</td>
<td>Aerospace Structures I</td>
<td>3</td>
<td>ES 204, MA 345</td>
</tr>
<tr>
<td>AE 325</td>
<td>Experimental Space Systems Engineering</td>
<td>1</td>
<td>PS 250, EP 394</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
<th>Prerequisites/Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE 301</td>
<td>Aerodynamics I</td>
<td>3</td>
<td>ES 206, MA 243</td>
</tr>
<tr>
<td>AE 302</td>
<td>Aerodynamics II</td>
<td>3</td>
<td>AE 301, ES 305</td>
</tr>
<tr>
<td>AE 313</td>
<td>Space Mechanics</td>
<td>3</td>
<td>AE 301, ES 305</td>
</tr>
<tr>
<td>AE 314</td>
<td>Experimental Aerodynamics</td>
<td>1</td>
<td>COM 221, AE 302</td>
</tr>
<tr>
<td>AE 315</td>
<td>Experimental Aerodynamics Laboratory</td>
<td>0.3</td>
<td>COM 221, AE 302</td>
</tr>
<tr>
<td>AE 318</td>
<td>Aerospace Structures I</td>
<td>3</td>
<td>ES 204, MA 345</td>
</tr>
<tr>
<td>AE 325</td>
<td>Experimental Space Systems Engineering</td>
<td>1</td>
<td>PS 250, EP 394</td>
</tr>
</tbody>
</table>
Undergraduate Course Descriptions

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE 326</td>
<td>Experimental Space Systems Engineering Laboratory</td>
<td>1</td>
<td>1 Credit Laboratory for the fundamentals of spacecraft systems. A lab covering each of the major subsystems of spacecraft, which may include propulsion, attitude control, power, telemetry and command, communications, structures and vibrations, materials and mechanisms, thermal control, and mass properties. The Experimental Space Systems Engineering Lab, AE 326, must be taken during the same semester as AE 325. Prerequisite: PS 253. Corequisite: EP 394.</td>
</tr>
<tr>
<td>AE 350</td>
<td>Project Engineering</td>
<td>3</td>
<td>Role of the engineer in project management with emphasis on systematic evaluation of the benefits and costs of projects involving engineering design and analysis. Proposal preparation and presentation, engineering contracts, negotiation techniques. Value engineering. Prerequisite: Junior class standing or consent of instructor.</td>
</tr>
<tr>
<td>AE 409</td>
<td>Aircraft Composite Structures</td>
<td>3</td>
<td>Introduction to reinforced plastic composite structural materials and their use in modern aircraft. Discussion of basic material properties, testing procedures, design and analysis using classical lamination theory, and fabrication techniques, including some hands-on demonstrations. Prerequisites: ES 202, ES 320.</td>
</tr>
<tr>
<td>AE 411</td>
<td>Advanced Experimental Aerodynamics (2,3)</td>
<td>3</td>
<td>This course consists of a series of advanced experiments using a wind tunnel. Topics include model design and construction, testing procedures, control surface testing, propeller testing, the use of wind tunnel data, scale effects, complete model testing, and an introduction to supersonic testing. Prerequisite: AE 314.</td>
</tr>
<tr>
<td>AE 414</td>
<td>Space Propulsion</td>
<td>3</td>
<td>The course provides the student with an introduction to the basic principles of liquid and solid propulsion systems. Flight performance parameters are presented for single and multistage vehicles. The thermo-chemistry of the combustion process will also be discussed. Performance enhancements of nuclear rockets and electric propulsion will be covered. Prerequisites: AE 301, ES 305.</td>
</tr>
<tr>
<td>AE 416</td>
<td>Aerospace Structures and Instrumentation</td>
<td>1</td>
<td>Lecture-based course to support the Structures and Instrumentation Laboratory. Course emphasizes aerospace vehicle testing through instrumentation, data acquisition, and data reduction. Test plans and design are used. The Structures and Instrumentation Laboratory, AE 417, must be taken during the same semester as AE 416. Prerequisites: COM 221, EE 335, and either AE 318 or ME 304.</td>
</tr>
</tbody>
</table>
Undergraduate Course Descriptions

AE 417
Aerospace Structures and Instrumentation Laboratory (0,3)
1 Credit
Principles of modern aerospace vehicle testing and instrumentation. Basic electrical measurements and devices such as strain gages, piezoelectric sensors, and thermocouples. Topics could include measurement of fluid pressure and flow; temperature; thermal and transport properties; strain; motion; vibration; force and torque. Experimental static and dynamic analysis of structures. Processing and analyzing experimental data; report writing and data presentation. The Structures and Instrumentation Laboratory, AE 417, must be taken during the same semester as AE 416.
Prerequisites: COM 221, EE 335, and either AE 318 or ME 304.

AE 418
Aerospace Structures II (3,0)
3 Credits
Continuation of AE 318. Methods of computer-aided deflection and stress analysis of redundant lightweight structural systems by means of virtual work principles and their energy counterparts. Introduction to finite element theory. Buckling considerations. Applications include space structures and semimonocoque structures.
Prerequisites: AE 318.

AE 420
Aircraft Preliminary Design (3,3)
4 Credits
Airplane conceptual design principles are developed to meet modern aerodynamic, propulsion, structural, and performance specifications. A complete airplane is designed, resulting in a design package consisting of specifications, aerodynamic calculations, inboard profile drawing, weight and balance, general arrangement drawing, aerodynamic drag analysis, and complete performance report.
Prerequisites: EGR 200, AE 314, AE 413, or consent of instructor.

AE 421
Aircraft Detail Design (3,3)
4 Credits
Principles of aircraft detail and component part design, manufacture, and production are covered along with projects to give actual experience in the design of aircraft components. Carries the design of an airplane from the general layout to the design of its detail parts and the design of necessary tools.
Prerequisites: AE 418, AE 420, or consent of the instructor.

AE 426
Spacecraft Attitude Dynamics (3,0)
3 Credits
Prerequisite: AE 313.

AE 427
Spacecraft Preliminary Design (3,3)
4 Credits
Spacecraft preliminary design principles are developed to meet mission objectives. A complete spacecraft is designed, resulting in a design package consisting of specifications; calculations; CAD drawings; weight and various subsystem budgets; and a series of trade studies, reviews, and design reports.
Prerequisites: EGR 200, AE 313, EP 394, or instructor consent.
Corequisite: AE 426 or instructor consent.

AE 430
Control Systems Analysis and Design (3,0)
3 Credits
Modeling, analysis, and control of dynamical systems with aerospace applications. Transfer functions, block diagram algebra. Routh Hurwitz stability criteria. Introduction to system design using root locus, Bode and Nyquist diagrams.
Prerequisites: MA 345, ES 204.

AE 433
Aerodynamics of the Helicopter (3,0)
3 Credits
The development of rotating-wing aircraft and the helicopter. Hovering theory and vertical flight performance analysis. Auto-rotation, physical concepts of blade motion and control, aerodynamics and per-

Prerequisites: AE 302, MA 441.

AE 445
Spacecraft Detail Design (3,3)
4 Credits
Principles of spacecraft detail and subsystem design, analysis, modeling, manufacture, and test are covered and incorporated into projects to give actual experience in the detail design and integration of spacecraft subsystems and systems. Integration of multiple subsystems into a single functional model is a key component of the course.

Prerequisite: AE 318, AE 426, AE 427, or consent of instructor.

Corequisite: AE 430.

AES 111
Plant Biology (3,3)
4 Credits
This course will study the principles and processes associated with the biology of plants, including a survey of fungi, green protista, and plants. Major emphasis on vascular plants, evolutionary origins, and ecological adaptations. One three-hour laboratory session per week.

AES 112
Animal Biology (3,3)
4 Credits
This course will study the principles and processes found in the animal kingdom, including a survey of the major animal groups. Major emphasis is on structure, diversity, phylogeny, and ecological adaptations. One three-hour laboratory session per week.

AES 142
Introduction to Environmental Science (3,0)
3 Credits
An introductory course that stresses the interrelations of all aspects of the living and the nonliving world. Introduces the student to key concepts and principles that govern how nature works and the application of these concepts and principles to possible solutions to environmental and resource problems.

AES 240
Natural History of the Region (3,3)
4 Credits
This course focuses on the geology, paleohistory, flora, fauna, and ecosystems of the region. The course covers such topics as the relationship between slope, elevation, topography, and plant communities.

AES 304
Environmental Science (3,0)
3 Credits
A survey course in the environmental problems arising from human use and abuse of the environment. Ecological, economic, sociologic, and technologic principles will be applied to the management control of pollution of the atmosphere and water sources of the Earth.

Prerequisite: AES 142 or permission of the instructor.

AES 306
Consumer and Hazardous Waste (3,0)
3 Credits
Introduction to sources, characteristics, and concerns of hazardous materials in environmental systems. Examination of general approaches toward site assessment, risk analysis, site remediation, and other issues pertinent to hazardous waste management. Development of environmental literacy is emphasized.

Prerequisite: One year of high school chemistry or concurrent enrollment in PS 105 or PS 106.

AES 308
Atmospheric Environmental Studies (3,0)
3 Credits
Overview of atmospheric environmental topics on local and regional issues as well as global change issues. Introduction to the chemistry of atmospheric pollution. Examination of sources of air pollution especially from the aerospace industries. Includes discussion of monitoring, regulation, and control of air pollution.

Prerequisite: AES 142 or permission of instructor.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Description</th>
<th>Prerequisite(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AES 309</td>
<td>Principles of Ecology (2,3)</td>
<td>3</td>
<td>This course is designed to provide practical experience in the scientific measurement of environmental parameters. Experience in collecting and identifying plants and animals in the different ecosystems will be developed by field and laboratory work.</td>
<td>AES 142 or permission of instructor</td>
</tr>
<tr>
<td>AES 310</td>
<td>Air Quality and Sound Pollution (3,0)</td>
<td>3</td>
<td>The examination of the fundamental principles that govern air quality, its pollution, and its management. Also the fundamental principles associated with sound pollution and its management.</td>
<td>AES 142 or permission of the instructor</td>
</tr>
<tr>
<td>AES 311</td>
<td>Water Quality (3,0)</td>
<td>3</td>
<td>The hydrologic cycle, with emphasis on atmospheric, land surface, shallow subsurface, and groundwater processes. Examination of physical, chemical, and biological properties of these aquatic systems and the effects of common pollutants. Development of environmental literacy is emphasized.</td>
<td>AES 142 or permission of the instructor</td>
</tr>
<tr>
<td>AES 312</td>
<td>Plant Identification (2,3)</td>
<td>3</td>
<td>This course is designed to provide practical experience in the identification of local flowering plants through the use of regional floras and recognition of common plant families. Elements of plant collection, identification, and herbarium techniques will be taught through classroom lectures and field and lab work. Students will be required to prepare their own plant collection.</td>
<td>Junior standing</td>
</tr>
<tr>
<td>AES 313</td>
<td>Riparian Ecology (2,3)</td>
<td>3</td>
<td>The analysis of the structure, function, and classification of riparian habitats with special emphasis on Southwestern waterways. Evaluation of limnological, floral, and geomorphic resources that create specific riparian habitats will be covered.</td>
<td>Junior standing</td>
</tr>
<tr>
<td>AES 330</td>
<td>Environmental Consulting (3,0)</td>
<td>3</td>
<td>Today’s industries, including the aviation industry, are under the umbrella of federal and state regulations dealing with a variety of environmental issues. One aspect of these regulations is an EA (Environmental Assessment), which is part of the NEPA (National Environmental Protection Act) regulations. This process will be examined and used to analyze local and regional projects.</td>
<td>Junior standing</td>
</tr>
<tr>
<td>AES 402</td>
<td>Environmental Quality Laboratory (0,3)</td>
<td>1</td>
<td>A laboratory course using field techniques and equipment commonly found in the environmental workplace. Projects and demonstrations will use local flight-line and airport municipalities as examples.</td>
<td>AES 306 or AES 310</td>
</tr>
<tr>
<td>AES 403</td>
<td>Wildlife and Airports (3,0)</td>
<td>3</td>
<td>An examination of the problems and solutions associated with wildlife and their impact on airport safety. Special emphasis on problems correlated with birds.</td>
<td>Junior standing</td>
</tr>
<tr>
<td>AES 406</td>
<td>Environmental Management (3,0)</td>
<td>3</td>
<td>This course focuses on the development of an environmental management plan. Today much of the environmental work in corporations, including the aviation industry, is carried out in projects. The management of these projects starts with the development of proposals, funding sources, tasks, and timelines. Employees at a variety of levels are required to help manage projects, so terms and organizational contents will be covered.</td>
<td>Junior standing</td>
</tr>
<tr>
<td>AES 490</td>
<td>Senior Seminar (3,0)</td>
<td>3</td>
<td>This is a senior capstone course dealing with specific issues associated with the environmental work place both from an airport and municipality point of view. Topics include but are not limited to: storm water issues, noise, fuel spills, NEPA, 404 permitting.</td>
<td>Junior standing</td>
</tr>
</tbody>
</table>
Undergraduate Course Descriptions

Air Force Aerospace Studies

AF 101
The Foundation of the U.S. Air Force (General Military Course) (1,0)
1 Credit
A survey course designed to introduce students to the U.S. Air Force and Air Force Reserve Officer Training Corps. Featured topics include mission and organization of the Air Force, officership and professionalism, military customs and courtesies, communication skills, and Air Force officer career opportunities. A weekly Leadership Laboratory is mandatory for Air Force ROTC pursuing cadets and complements this course by providing cadets with followership experiences.

Corequisite: AF 101L (for AFROTC-enrolled students only).

AF 102
The Foundation of the U.S. Air Force (General Military Course) (1,0)
1 Credit
Continuation of AF 101. Topics include Air Force core values, heritage, leadership principles, and human relations, while continuing to practice Air Force communication skills. A weekly Leadership Laboratory is mandatory for Air Force ROTC pursuing cadets and complements this course by providing cadets with followership experiences.

Corequisite: AF 102L (for AFROTC-enrolled students only).

AF 101L/AF 102L
Leadership Laboratory (0,2)
0 Credit
Consists of Air Force customs, courtesies, leadership, teamwork, field training orientation, drill, ceremonies, and field training orientation. Includes a mandatory physical fitness program. These courses are graded Pass/Fail.

AF 201
The Evolution of USAF Air and Space Power (General Military Course) (1,0)
1 Credit
Continuation of AF 201. This course continues to explore Air Force history, beginning with the Vietnam era and culminating with the modern air and space applications employed during Operations Iraqi and Enduring Freedom. A weekly Leadership Laboratory is mandatory for AFROTC cadets and complements this course by providing cadets with followership experiences.

Corequisite: AF 201L (for AFROTC-enrolled students only).

AF 202
The Evolution of USAF Air and Space Power (General Military Course) (1,0)
1 Credit
Continuation of AF 201. This course continues to explore Air Force history, beginning with the Vietnam era and culminating with the modern air and space applications employed during Operations Iraqi and Enduring Freedom. A weekly Leadership Laboratory is mandatory for AFROTC cadets and complements this course by providing cadets with followership experiences.

Corequisite: AF 202L (for AFROTC-enrolled students only).

AF 201L/AF 202L
Leadership Laboratory (0,2)
0 Credit
Consists of Air Force customs, courtesies, leadership, teamwork, drill, ceremonies, and field training orientation. Includes a mandatory physical fitness program. These courses are graded Pass/Fail.

AF 301
Air Force Leadership Studies (Professional Officer Course) (3,0)
3 Credits
A study of leadership, management fundamentals, professional knowledge, Air Force personnel evaluation systems, leadership ethics, and the communication skills required of an Air Force junior officer. Case studies are used to examine Air Force leadership and management situations as a means of demonstrating and exercising practical applications of the concepts being studied. A mandatory Leadership Laboratory complements this course by providing advanced leadership experience in officer-type activities, giving students the opportunity to apply the leadership and management principles of this course.

Corequisite: AF 301L (for AFROTC-enrolled students only)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF 302</td>
<td>Air Force Leadership Studies (Professional Officer Course) (3,0)</td>
<td>3</td>
<td>Continuation of AF 301. A weekly Leadership Laboratory is mandatory.</td>
</tr>
<tr>
<td></td>
<td>Corequisite: AF 302L (for AFROTC-enrolled students only)</td>
<td></td>
<td>---</td>
</tr>
<tr>
<td>AF 301L/AF 302L</td>
<td>Leadership Laboratory (0,2)</td>
<td>0</td>
<td>Provides advanced leadership experience in officer-type activities, giving students the opportunity to apply leadership and management principles. Includes a mandatory physical fitness program. These courses are graded Pass/Fail.</td>
</tr>
<tr>
<td>AF 401</td>
<td>Preparation for Active Duty (Professional Officer Course) (3,0)</td>
<td>3</td>
<td>Examines the national security process, regional studies, advanced leadership ethics, and Air Force doctrine. Special topics of interest focus on the military as a profession, officership, military justice, civilian control of the military, preparation for active duty, and current issues affecting military professionalism. Continued emphasis is given to the refinement of communication skills. An additional Leadership Laboratory complements this course by providing advanced leadership management principles. Corequisite: AF 401L (for AFROTC-enrolled students only).</td>
</tr>
<tr>
<td>AF 402</td>
<td>Preparation for Active Duty (Professional Officer Course) (3,0)</td>
<td>3</td>
<td>Continuation of AF 401. A weekly Leadership Laboratory is mandatory. Corequisite: AF 402L (for AFROTC-enrolled students only).</td>
</tr>
<tr>
<td>AF 401L/AF 402L</td>
<td>Leadership Laboratory (0,2)</td>
<td>0</td>
<td>Provides advanced leadership experiences in officer-type activities, giving students the opportunity to apply leadership and management principles. Includes a mandatory physical fitness program. These courses are graded Pass/Fail. Prerequisites: Completion of the General Military Course or Two-Year Program selection and/or approval of the professor of Aerospace Studies.</td>
</tr>
<tr>
<td>AF 403L/AF 404L</td>
<td>Leadership Laboratory (0,2)</td>
<td>0</td>
<td>Mandatory. Provides advanced leadership experiences in officer-type activities. Includes a mandatory physical fitness program. Prerequisite: Completion of the Professional Officer Course. These courses are graded Pass/Fail.</td>
</tr>
</tbody>
</table>

Aeronautical Science

Enrollment in the following courses is restricted to students in the Aeronautical Science degree program unless approved by the Aeronautical Science Department Chair and the Director of Flight: AS 119, 121, 221, AS 252, AS 321, AS 372, AS 442.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS 109</td>
<td>Flight Transition Ground Course (2,0)</td>
<td>2</td>
<td>A review of elementary commercial pilot flight operations including basic aircraft control, elementary radio navigation, air traffic control procedure, cross-country operations, and solo flight. Associated ground instruction will include a review of knowledge areas required for Private Pilot certification. This course is specifically designed for students entering Embry-Riddle’s Commercial Pilot program with a Private Pilot certificate and desiring advanced standing. Prerequisite: FAA Private Pilot Certification with Airplane Single-Engine Land Rating.</td>
</tr>
</tbody>
</table>
| AS 119 | Private Pilot Operations (4,0) | 4 | This course develops aeronautical knowledge required for certification as a Private Pilot with an
Airplane Single Engine Land rating. Topics include regulations, safety, pre-solo operations, cross-country planning, airspace, chart use, communications, weather, performance, weight and balance, aerodynamics, and decision-making.

AS 120

Principles of Aeronautical Science (3,0)
3 Credits
An introductory course in Aeronautical Science designed to provide the student with a broad-based aviation orientation in flight-related areas appropriate to all non-Aeronautical Science degree programs. Subjects include historical developments in aviation and the airline industry, theory of flight, airport operations, aircraft systems and performance, elements of air navigation, basic meteorology theory, air traffic principles, flight physiology, and aviation regulations and safety. Not available to Aeronautical Science students or to students with FAA flight certificates.

AS 122

Introduction into Careers in Aviation (3,0)
3 Credits
An introduction to the interdisciplinary aspects of flight and aviation fields demonstrating how the various facets of aviation are interrelated. Students are involved in an array of exercises, activities, and projects dealing with aviation and their selected course of study in Aeronautical Science. Students will be orientated to Aeronautical Science programs, the College of Aviation, the campus, the local community, and the geographic area. Students will be introduced to aviation history, weather, navigation, aerodynamics, aviation safety, air traffic management, and flight management systems. Additional instruction will be provided for the use of college resources, career planning, goal setting, developing study skills, and time management. Emphasis will be given to developing student personal, interpersonal, and social skills to be successful in college and in aviation career fields.

AS 142

Private Helicopter Operations (3,0)
3 Credits
During this course the student obtains the foundation for all future helicopter aviation training. The student will be introduced to helicopter fundamentals of flight and will become familiar with basic flight maneuvers and operating procedures. Emphasis will be placed on developing a safe and competent pilot who is adequately prepared for solo, cross-country, and night operations. The student will receive training in safety awareness, crew resource management, and aeronautical decision-making. By the end of the course, the student will have met the aeronautical knowledge requirements to take the FAA Private Pilot, Rotorcraft-Helicopter, written knowledge test.

AS 145

Helicopter Flight Transition Ground Course (2,0)
2 Credits
A review of elementary commercial pilot flight operations including basic rotorcraft control, elementary radio navigation, air traffic control procedure, cross-country operations, and solo flight. Associated ground instruction will include a review of knowledge areas required for Private Pilot Helicopter certification. This course is specifically designed for students entering Embry-Riddle’s Commercial Helicopter Pilot Program with a Private Pilot certificate and desiring advanced standing.

Prerequisite: FAA Private Pilot Helicopter Certification

AS 220

Unmanned Aerial Vehicles and Systems (3,0)
3 Credits
This course is a survey of Unmanned Aerial Vehicles and systems, emphasizing the military and commercial history, growth, and applications of UAVs. Course will include basic acquisition, use, and operation of UAVs with an emphasis on operations.

AS 221

Instrument Pilot Operations (3,0)
3 Credits
This course develops aeronautical knowledge required for addition of an Instrument Airplane rating to a Private Pilot certificate. Topics include instrument flying regulations, safety, operations, navigation systems, chart use, weather, flight planning, decision-making, and crew resource management.

Prerequisite: AS 119.

AS 246

Basic Air Navigation (3,0)
3 Credits
An introduction to navigation for Aeronautical Science students. The course content includes aircraft instruments and systems theory, aircraft performance, navigation theory and solution methods, application of electronic navigation systems, precision flight control principles, navigation information sources and planning procedures, and special problems in navigation with emphasis on flight planning.

Prerequisite: FAA Private Pilot written knowledge test.
Undergraduate Course Descriptions

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
</table>
| AS 252 | Instrument Helicopter Operations (3,0) | 3 | This course will examine helicopter instrument flying in the National Airspace System below 18,000 feet. Topics to be covered include Federal Aviation Regulations, helicopter performance for instrument flight, instrument approach procedures, weather related to instrument flying, en route navigation, and the elements of resource management. By the end of the course, the student will have met the aeronautical knowledge requirements to take the FAA Instrument, Rotorcraft-Helicopter written knowledge test.
 Prerequisite: AS 142 or FAA Private Pilot Certificate with Rotorcraft-Helicopter Rating. |
| AS 254 | Aviation Legislation (3,0) | 3 | This course examines the evolution of federal civil aviation regulations in the U.S. It provides an overview of the past and present problems prompting regulation of the industry, the resultant safety legislation, airport development funding legislation, and international aviation legislation. |
| AS 309 | Aerodynamics (3,0) | 3 | Incompressible flow airfoil theory, wing theory. Calculation of stall speed, drag, and basic performance criteria. Configuration changes, high and low speed conditions. Special flight conditions. Introduction to compressible flow.
 Corequisite: PS 114. |
| AS 310 | Aircraft Performance (3,0) | 3 | Aerodynamic performance of aircraft powered by reciprocating, turboprop, or jet turbine engines. Stability and control, weight and balance, and operating data.
 Prerequisite: AS 309. |
| AS 311 | Aircraft Engines-Turbine (3,0) | 3 | A comprehensive study of aircraft gas turbine engine fundamentals and theory at the technical level. Areas of study include background, types, variations, and applications; engine theory; construction and design; systems and accessories; representative engines.
 Corequisite: PS 114. |
| AS 321 | Commercial Pilot Operations (3,0) | 3 | This course develops aeronautical knowledge required for certification as a Commercial Pilot with Single and Multi-Engine Land ratings. Topics include multi-engine flying in VFR and IFR environments, including high altitude, night, winter, and mountain. Topics also include regulations, safety, weather, aerodynamics, weight and balance, performance, aircraft systems, navigation facilities, chart use, and decision-making.
 Prerequisite: AS 221. |
| AS 340 | Instructional Design in Aviation (3,0) | 3 | The application of the method of scientific inquiry to the process of instruction in aviation is presented. This means the systematic design of instruction, based on knowledge of the learning process, taking into account as many factors about the particular situation as possible. Special emphasis will be placed on examining instructional problems and needs in aviation, setting a procedure for solving them, and then evaluating the results.
 Prerequisite: Private Pilot Certificate with Instrument Rating. |
| AS 350 | Domestic and International Navigation (3,0) | 3 | This course will study FAR Part 121 domestic and flag regulations and evaluate their impact on long-range domestic and international flights. The student will be able to use ICAO, JAA, and FAA operational requirements and typical air carrier Ops SPECS to plan domestic and transoceanic flights. CBT simulation programs may be used as necessary to demonstrate actual flight scenarios. High-altitude airspace, navigation, and approach procedure chart interpretation will be examined in detail. Students will study and use the concepts of MNPS and RVSM airspace, dispatch procedures, ETOPS, ETP, driftdown, track messages, LRN accuracy checks, Oceanic Air Traffic Control clearances, international METARs and TAFs, and emergencies and contingencies while on oceanic tracks. Communication systems requirements and applications are discussed. |
methodology will be examined to include satellite, digital, and analog devices.

Prerequisites: AS 246, AS 310, and AS 221 or Instrument Rating.

AS 356
Aircraft Systems and Components (3,0)
3 Credits
A comprehensive study of aircraft systems and components at the technical level. Areas of study include aircraft electrical, hydraulic, fuel, propeller, and auxiliary systems including theory of operation, calculations, and related Federal Aviation Regulations.

Prerequisite: PS 104.

AS 357
Flight Physiology (3,0)
3 Credits
Aeromedical information. Causes, symptoms, prevention, and treatment of flight environment disorders. Altitude effects, spatial disorientation, body heat imbalance, visual anomalies, and psychological factors are included as they relate to pilot performance and survival effectiveness.

Prerequisite: AS 120 or PPL FAA written.

AS 358
Advanced Avionics (3,0)
3 Credits
The student will be taught the electronic characteristics of communications, navigation, and surveillance equipment both on the ground and in the aircraft. This will include historical information leading to the current systems. Systems and concepts taught will include ADF, VOR, INS, IRS, GPS, ILS, VHF and UHF communications, SATCOM, ACARS, TCAS, EGPWS, transponders (Mode A, C, and S), ADS and ADS-B, free flight, and weather radar. Since this area is very dynamic, new systems will be introduced as they are designed and perfected.

Prerequisite: PS 104 and AS 221 or Instrument Rating.

AS 372
Commercial Helicopter Operations (3,0)
3 Credits
The student will develop an in-depth knowledge of helicopter components, functions, systems, aerodynamics, and performance at the commercial pilot level. The student will also gain necessary knowledge on en route flight to include weather, navigation, and regulations. By the end of the course, the student will have met the aeronautical knowledge requirements to take the FAA Commercial Pilot, Rotorcraft-Helicopter written knowledge test.

Prerequisite: AS 142 or FAA Private Pilot Certificate with Rotorcraft-Helicopter Rating.

AS 378
Environmental Helicopter Operations (3,0)
3 Credits
During this course, the student obtains the foundation for helicopter operations in terrain flight and in varying environmental conditions. The student will be introduced to aspects particular to helicopter flight as it pertains to adverse weather, and day and night environments specifically pertaining to take-off, cruise, and landing. Emphasis will be placed on understanding principles of flight close to the Earth and hazards both natural and man-made. Additional emphasis will be placed on helicopter flight in and around mountains. The student will be exposed to visual references and how to adjust perceptions to maintain safe, low-level flight in and around hazardous conditions present in commercial helicopter operations. By the end of the course, the student will have sufficient knowledge to understand the concepts necessary for employment in the commercial helicopter industry.

Prerequisite: AS 372 or approval of instructor.

AS 380
Pilot Career Planning and Interviewing Techniques (1,0)
1 Credit
A course in which students will discuss and develop short-term and long-term job and career goals, conduct career research using various University and industry resources, prepare a personal job search portfolio, prepare resumes and letters of application, and gain insights and proficiency in interviewing skills so they are better prepared to enter the job market upon graduation. Students will participate in simulated interview scenarios, will be expected to correspond with at least one company, and will be involved in the evaluation of letters, resumes, and interviews. This course will be graded Pass/Fail.

Prerequisite: Junior standing or approval of instructor.

AS 387
Crew Resource Management (3,0)
3 Credits
A capstone course designed to develop a detailed understanding of the organizational behavior, interpersonal relationships skills, and other critical behavioral dynamics of professional flight crews. The course builds on the knowledge of crew resource
management (CRM) acquired during the student’s private, instrument, and commercial pilot certification training. The history of CRM, CRM concepts of communication processes, problem solving, group dynamics, workload management, and situational awareness will be investigated. Aircraft incidents and accidents related to the evolution of CRM training programs and FAA regulations will be analyzed. Intrapersonal and psycho-motor skills will be addressed as they relate to safe, legal, and efficient flight operations.
Prerequisite: PSY 101.

AS 388
Helicopter Flight Planning (3,0)
3 Credits
During this course, the student obtains the foundation for the FARs as they relate to flight planning and navigation for various operations. The student will be able to use regulatory and operations requirements to plan flights. Remote location flight and terrain flight navigation procedures will be studied closely. Cargo planning for internal and/or external loads will also be considered. Communications procedures with internal and external operations nodes during near-ground operations will be discussed. By the end of the course, the student will have sufficient knowledge to understand the concepts necessary for effective flight planning and operation in the commercial helicopter industry.
Prerequisite: AS 372 or approval of instructor.

AS 402
Airline Operations (3,0)
3 Credits
A study of the scope and function of a major air carrier’s organizational structure and the specific relationships of the operations department with those of marketing, maintenance, and safety are discussed. A study of corporate issues including the industry in general, market structure, certification, FAR Part 121 regulations, economic issues, mergers, corporate culture, and international topics will be included. From an operational perspective, topics include flight operations employment policies, domiciles, operating specifications, types of services provided, training, passenger considerations, decision making, communications, and pertinent FARs.
Prerequisite: AS 387.

AS 405
Aviation Law (3,0)
3 Credits
This course will introduce the advanced student to the U.S. Constitution as well as to federal, state, and local statutes. The student will become familiar with case law and common law and will develop an understanding of the chronological development of these laws and their application to aviation. The student will be introduced to civil law, including tort, product liability, contract, sales, secured credit, property, environmental, and labor laws. Criminal statutory law and government, airman, and operator rights and liabilities will also be studied, as well as international laws and conferences.
Prerequisite: Junior standing.

AS 408
Flight Safety (3,0)
3 Credits
A capstone course designed to assist the student in developing an attitude and philosophy for accident prevention. The course includes ideal and practical, personal and organizational safety procedures and goals; safety philosophies; accident reports; human factors; principles of accident investigation, accident prevention programs, and accident statistics; current events; and NTSB special studies.
Prerequisite: Senior standing.

AS 410
Airline Dispatch Operations (3,0)
3 Credits
This capstone course includes a review of pertinent Federal Aviation Regulations, navigation systems and procedures, manual flight planning, emergency and abnormal procedures, the general operating manual, aircraft systems and performance development, human factors, and practical dispatching applications.
Prerequisites: WX 301, AS 310, and AS 350.
Corequisites: AT 200 and AS 221; or Instrument Rating, or instructor approval.

AS 411
Jet Transport Systems (3,0)
3 Credits
This course will provide the student with detailed knowledge of complete turbojet systems. The student will be exposed to complex air carrier aircraft systems and will conduct a detailed examination of the
B-747-400. Air carrier procedures are examined from a crew member’s operational perspective.
Prerequisite: AS 356, or permission of the instructor.

AS 412

Corporate and Business Aviation (3,0)

3 Credits

Operation of a corporate flight department. Value of management mobility. Aircraft and equipment evaluation, maintenance, flight operations, administration, fiscal considerations.

AS 420

Flight Technique Analysis (3,0)

3 Credits

Application of aerodynamic principles to the development of optimal pilot techniques and procedures. Uniform procedures applicable to all airplanes and special procedures for large, high-performance, and transport aircraft are analyzed, including principles of flight deck resource management.
Prerequisite: AS 356 and AS 358.

AS 421

Flight Instructor Ground Course (2,0)

2 Credits

The student will receive training in the maneuvers and procedures necessary for him/her to meet the standards contained in the Flight Instructor practical test standards, Single-Engine Land with Instrument Airplane rating. Additionally, the student will receive training in cockpit resource management and safe flying practices. Associated ground instruction will include completion of the Fundamentals of Instruction, the Flight Instructor Airplane, and the Flight Instructor Instrument written test.
Prerequisite: FAA Commercial Pilot Certificate with Single-Engine and Instrument Rating (FA 321 or FA 326).

AS 428

Advanced Helicopter Systems and Functions (3,0)

3 Credits

During this course, the student will study the principles and functions of advanced helicopter systems with an emphasis on automatic flight control systems and associated pilot interface mechanisms, power and rotor systems, avionics, environmental systems, and structures. Prerequisites: AS 252 Instrument Helicopter Operations, AS 311 Turbine Engines.
Prerequisite: AS 252 and AS 311.

AS 435

Electronic Flight Management Systems (3,0)

3 Credits

This course teaches the theory and principles governing flight with autopilot and flight management systems. Students will apply theory and principles by demonstrating good decisions and thought processes in autopilot and FMS/PC simulators.
Prerequisite: AS 350.

AS 438

Advanced Helicopter Operations (3,0)

3 Credits

During this course, the student will obtain the foundation for advanced and specialized commercial helicopter operations. The student will be introduced to specific areas of flight operations such as Long Lines, EMS, Electronic News Gathering, Corporate, Off-Shore, and Federal and Municipal Law Enforcement. Emphasis will be placed on developing a safe and competent pilot who is adequately prepared for flight operations in these areas, and can assume the duties of any managerial position. The student will receive training in standard operating, safety and training procedures, aircraft selection, operating and capital budgets, aircraft purchasing and leasing agreements, and an understanding maintenance requirements to include maintenance tracking, spare parts inventory, and record keeping. By the end of the course, the student will have sufficient knowledge to understand the concepts necessary for employment in the commercial helicopter industry.
Prerequisite: AS 372 or approval of instructor.

AS 442

Flight Instructor Helicopter Operations (3,0)

3 Credits

The theory and proper techniques of instruction and helicopter private and commercial pilot knowledge will be presented. The student will develop, plan, and give practice instruction on topics for private and commercial helicopter pilots. By the end of the course, the student will have met the aeronautical knowledge requirements to take the Fundamentals of Instruction and CFI-Helicopter written knowledge tests.
Prerequisite: AS 252 or FAA Commercial Pilot Certificate and Rotorcraft-Helicopter Rating.
AS 472
Operational Applications in Aeronautical Science (3,0)
3 Credits
This capstone course is designed to be a culminating experience for students in the Aeronautical Science degree program. This course focuses on the professional aspects of a career pilot, industry expectations of those entering the profession, and insights into the real-world application of aeronautical decision making, crew resource management, threat and error management, and airline operations. Life-long learning skills are promoted through the use of team exercises that require students to explore the regulatory and ethical requirements of professional pilots.
Prerequisite: AS 350, AS 387.

Note: Must be taken during the last two semesters before graduation.

AT 302
Air Traffic Management II (3,0)
3 Credits
Air Traffic Management II gives the student an introduction to the manuals, procedures, maps, charts, and regulations used by pilots and air traffic controllers in the National Airspace System (NAS). Included is an examination of FAA Orders, the Aeronautical Information Manual (AIM), and Federal Air Regulations (FARs). Students will also acquire basic knowledge about SIDs, STARs, en route IFR charts, and instrument approaches. Search and rescue, special operations, NOTAMS, and teamwork in the ATC environment are also studied in this course.

AT 305
Air Traffic Management III (3,0)
3 Credits
This course covers the basic air traffic control (ATC) procedures for instrument flight rules (IFR) in terminal ATC facilities in the National Airspace System (NAS). Knowledge and skill requirements for air traffic control specialists (ATCs) in the current ATC system are studied in the classroom and practiced in a realistic, performance-based laboratory environment. Duties and responsibilities of the Tracon air traffic controller are integrated into an understanding of how the total ATC system works. Classroom delivery is augmented by practical laboratory problems using an air traffic control simulation of terminal radar operations.
Prerequisite: AT 200.
Note: An additional lab fee is associated with this course.

AT 315
Air Traffic Management-VFR Tower (1,2)
3 Credits
AT 315 is the air traffic control VFR Tower segment in the Air Traffic Management (ATM) degree sequence. This course provides students with a fundamental knowledge of the U.S. air traffic control system and develops content knowledge in the following areas: the Federal Aviation Administration, its mission, organization, and operation; the air traffic control career; navigational aids, current and future; airspace; communications; federal aviation regulations; ATC procedures; control tower operations; non radar operations; radar operations; and future air traffic control systems. The course also provides essential information that is useful for pilots and other aviation professionals.
Prerequisite: AS 119 or AS 120.
emergency aircraft; flight progress strip marking; aircraft recognition and characteristics; limited weather observations; airport lighting systems; wake turbulence and its effects on arriving/departing aircraft; VFR and IFR ATC procedures; runway incursions; using ATIS; reporting RVR/RCR, determining prevailing visibility using visual reference; NOTAMs; and criteria for runway selection. The course also provides essential information that is useful for pilots and other aviation professionals.

Prerequisite: AT 302.

Note: An additional lab fees is associated with this course.

AT 401

Air Traffic Management IV (2,3)

3 Credits

This course integrates the knowledge of air traffic control gained in previous air traffic control courses with an opportunity to actually “work” air traffic control operating positions. Using a realistic air traffic control simulation, students issue instructions to aircraft, make hand-offs, coordinate with other controllers, solve aircraft confliction problems, and do other controller tasks. Making “real-time” decisions, determining strategies for controlling aircraft, and working with a dynamic scenario are features unique to this learning experience. This course combines classroom discussion and group and team coordination with various forms of evaluation for course credit. Student competency in the performance phase of the course is determined by computer scoring.

Prerequisites: AT 200, AT 305.

Note: An additional lab fees is associated with this course.

AT 405

Air Traffic Management V (2,3)

3 Credits

This course expands on the skills, knowledge, and abilities the student has acquired in previous ATC classes. AT 405 presents more demanding and complex traffic scenarios requiring higher-level performance and decision-making skills and prepares the student for initial training in any ATC specialization. Students will also gain an appreciation for the challenges of implementing large-scale changes in the National Airspace System. Upon successful completion of this course, students will demonstrate the knowledge and technical aptitude required for entry-level qualification as an air traffic control specialist.

Prerequisites: AT 200, AT 305, AT 401.

Note: An additional lab fees is associated with this course.

Business Administration

BA 102

Introduction to Aviation Business and Industry (3,0)

3 Credits

In this course, students gain the skills and strategies necessary for success in balancing student life and academics, while also being introduced to relevant business principles and practices associated with the aviation industry. To facilitate their development as an eventual aviation professional, students are familiarized with the common body of knowledge in aviation and learn about career planning; aircraft design, performance, operating characteristics, and maintenance; aviation safety and human factors; national and international laws/regulations; meteorology and environmental issues. Students explore current issues in the aviation industry and are introduced to airports, air cargo, ground operations, aircraft/engine manufacturers, regulatory agencies, military aviation, and general aviation.

BA 201

Principles of Management (3,0)

3 Credits

Provides an overview of relevant management principles and practices as applied in contemporary organizations. Focuses on management theories, philosophies, and functions.
<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA 210</td>
<td>Financial Accounting (3,0)</td>
<td>3</td>
<td>An introduction to accounting information systems and financial reports, including accounting concepts and analysis and interpretation of financial reports with an emphasis on the operating activities of aviation-related businesses.</td>
</tr>
<tr>
<td>BA 221</td>
<td>Advanced Computer-Based Systems (3,0)</td>
<td>3</td>
<td>This course covers advanced concepts of spreadsheet use, database management systems, and presentation graphics. Students perform macro and command language programming in applications packages. In addition, the course provides experience in locating and retrieving graphical and text-based information from the Internet to support management activities. Prerequisite: IT 109.</td>
</tr>
<tr>
<td>BA 308</td>
<td>Public Administration (3,0)</td>
<td>3</td>
<td>Characteristics of organization and management in government; impact of political processes and public pressures on administration action; role of regulatory agencies; governmental personnel and budgetary procedures; unique qualifications of the public administrator. Prerequisites: BA 201.</td>
</tr>
<tr>
<td>BA 311</td>
<td>Marketing (3,0)</td>
<td>3</td>
<td>Marketing theory; marketing management, sales management; market research. Public and customer relations, advertising, distribution.</td>
</tr>
<tr>
<td>BA 312</td>
<td>Managerial Accounting (3,0)</td>
<td>3</td>
<td>Emphasizes management’s use of cost information in internal decision-making. Decision-making processes include cost analysis, control, allocation, and planning. A variety of accounting techniques applicable to aviation/aerospace companies are presented. Prerequisite: BA 210.</td>
</tr>
<tr>
<td>BA 319</td>
<td>Managerial and Organizational Behavior (3,0)</td>
<td>3</td>
<td>This course will examine the functions to be accomplished in effectively exploring managerial and organizational behavior. A study of the interrelationship of staff managers, specialists, and line managers will assist the student in understanding and applying management theories to real-world human resource planning and execution. Areas of concentration include human resource planning; recruitment and selection, training and development; compensation; safety and health; labor relations; and understanding individual, group, team, and social processes. Special attention is devoted to how technology has shaped the modern work environment. Prerequisite: BA 201.</td>
</tr>
<tr>
<td>BA 320</td>
<td>Business Information Systems (3,0)</td>
<td>3</td>
<td>A management approach to understanding business information systems. The general characteristics, potential, and limitations of business systems are covered. The major emphasis is on understanding the inputs, processing, and outputs of a variety of business systems; the ways in which business systems are interrelated and the inherent management problems involved in the implementation and control of such systems. Prerequisite: BA 221</td>
</tr>
<tr>
<td>BA 322</td>
<td>Aviation Insurance (3,0)</td>
<td>3</td>
<td>An introduction to the basic principles of insurance and risk with its special application to the aviation industry. An in-depth review of the aviation insurance industry in the U.S., including the market and types of aviation insurers. Prerequisite: Sophomore standing.</td>
</tr>
<tr>
<td>BA 324</td>
<td>Aviation Labor Relations (3,0)</td>
<td>3</td>
<td>An investigation of labor-management relations in the aviation industry. Examined are the history of unionism, structure of unions, legal environment and the Railway Labor Act, collective bargaining, public sector relationships, grievance procedures, and conflict resolution.</td>
</tr>
</tbody>
</table>
BA 325
Social Responsibility and Ethics in Management (3,0)
3 Credits
A comprehensive inquiry into the major components of social responsibility including economic, legal, political, ethical, and societal issues involving the interaction of business, government, and society.
Prerequisite: BA 201.

BA 332
Corporate Finance I (3,0)
3 Credits
The finance function as used by management, including financial analysis and control financial planning; and short, intermediate, and long-term financing, using the theory of cost of capital and leverage in planning financial strategies. Aviation-related businesses are emphasized.
Prerequisite: BA 210.

BA 333
Personal Financial Planning (3,0)
3 Credits
A study of the personal financial planning process. Includes taxes, investments, purchase of housing/auto, insurance needs and analysis, use of credit, and retirement and estate planning. Student will develop a personal financial plan and will invest in a $500,000 portfolio of securities.

BA 334
Investment Analysis (3,0)
3 Credits
This course is an introduction to the field of investments. The course is designed as a guide for people studying the capital markets for the first time. The course provides a survey of investments including security markets, investment vehicles, investment analysis, and portfolio management. Specific topics include the concept of risk and return, types of financial instruments, study of how they are bought and sold, an introduction to how they are valued in the marketplace, a survey of investment companies, asset allocation, concept of efficient markets, equity and bond portfolio management, portfolio performance evaluation, fiduciary responsibility and ethical conduct in the investment profession, and corporate governance. The course is taught from the viewpoint of an individual rather than an institutional investor. The course uses current economic and capital market information for a practical application of the course materials.
Prerequisites: BA 332 and junior standing.

BA 335
International Business (3,0)
3 Credits
An analysis of economic development and international trade in modern times, with an examination of current U.S. relations with other nations. Attention will be focused on the impact of foreign trade on the aviation industry and the industry’s contribution to economic development.

BA 342
International Finance (3,0)
3 Credits
The purpose of this course is to provide the analytical framework required for understanding how changes in international financial conditions influence decisions faced by modern business leaders in a global setting. The focus will be on interactions between cross-border trade and capital flows, inflation, interest rates, exchange rates, monetary and fiscal policy, and economic growth. Exchange rate regimes, exchange rate risk and hedging, global capital budgeting, short-term and long-term financing of multinational enterprise, and managing multinational operations will also be explored. The course is tailored to students seeking careers in global banking and investment or with finance and strategy departments of aviation operating enterprise in global markets.
Prerequisite: BA 332.

BA 390
Business Law (3,0)
3 Credits
A survey of the legal aspects of business transactions. Areas covered include contracts, agency, bailment, negotiable instruments, partnerships, corporations, consumer credit, and the government’s influence on business law.

BA 408
Airport Management (3,0)
3 Credits
An examination of the management of airports with an emphasis on the facilities that make up an airport system, including airspace, airfield, and terminal and ground access operations.
Prerequisites: BA 201.
BA 410
Management of Air Cargo (3,0)
3 Credits
Intensive study of the practices and problems of management with respect to air cargo. Importance of air cargo service to the economy, rate and tariff problems, terminal facilities, competition, and future prospects.
Prerequisite: BA 201 and junior standing.

BA 415
Airline Management (3,0)
3 Credits
An introduction to the administrative aspects of airline operation and management. Topics include the annual profit plan, uniform system of accounts and reports, demand analysis, scheduling, the theory of pricing, fleet planning, facilities planning, and airline financing.
Prerequisite: BA 201 and junior standing.

BA 418
Airport Administration and Finance (3,0)
3 Credits
An advanced study of the organizational, political, and financial administration of public and private civil use airports. Areas of emphasis include public relations management, safety and security issues, employee organizational structures, financial and accounting strategies, revenue and expense sources, economic impacts of airport operations, airport performance measurement standards, and current trends and issues of direct concern to airport administrators.
Prerequisite: BA 408 and junior standing.

BA 420
Management of Production and Operations (3,0)
3 Credits
An intensive study of management in all organizations: service oriented and product oriented. Scheduling, inventory control procurement, quality control, and safety are investigated. Particular attention is given to applications of aviation-oriented activities.
Prerequisites: MA 222 and senior standing.

BA 421
Small Business Management (3,0)
3 Credits
An analysis of the theoretical and practical knowledge necessary to be successful in conceiving, initiating, organizing, and operating a small business. Special focus will be placed on small businesses in the aviation field.
Prerequisite: BA 201 and BA 210

BA 425
Trends and Current Problems in Air Transportation (3,0)
3 Credits
Analysis of selected contemporary issues, problems, and trends facing management in various segments of the aviation industry, including general aviation and the airlines. Students apply previously learned concepts to practical problems to develop increased understanding and demonstrate knowledge of the subject.
Prerequisites: BA 201 and senior standing.

BA 427
Management of the Multicultural Workforce (3,0)
3 Credits
An investigation into the management of the multicultural workforce. The elements of cultural anthropology and international business, communicating across cultures, contrasting cultural values, and managing and maintaining organizational culture are addressed in the context of international aviation management.
Prerequisites: BA 201 and junior standing.

BA 430
International Trade and Regulations (3,0)
3 Credits
Economic analysis of international trade, capital flows, and labor migration with particular emphasis on the laws governing these factors. Aviation applications include code-sharing and other international airline agreements and the impact of trade subsidies and open skies treaties.
Prerequisites: EC 210 and junior standing.

BA 434
Corporate Finance II (3,0)
3 Credits
The objective of this course is to study the major decision-making areas of managerial finance and some selected topics in financial theory. The course reviews the theory and empirical evidence related to the investment and financing policies of the firm and attempts to develop decision-making ability in these areas. This course serves as a complement and supplement to Corporate Finance I. Topics include leasing, dividend policy, mergers and acquisitions,
corporate reorganizations, financial planning, working capital management, and international finance. Aviation and aerospace related businesses are emphasized.

Prerequisite: BA 332.

BA 436
Strategic Management (3,0)
3 Credits
This business capstone course examines strategic management principles involving strategy, formulation, implementation, evaluation, and organization analysis. Case analysis employing strategic management principles is used to examine and solve organization problems. Total quality management concepts are studied for improvement of organizational effectiveness.

Prerequisites: Senior standing and ABA degree program.

BA 299 - 499
Special Topics in Management
1-4 Credits
Individual independent or directed studies of selected topics in management.

Prerequisites: Consent of the instructor and approval of the department chair. May be repeated with change of content.

Computer Engineering

CEC 220
Digital Circuit Design (3,0)
3 Credits
Introduction to logic design and interfacing digital circuits. Boolean algebra, combinatorial logic circuits, digital multiplexers, circuit minimization techniques, flip-flop storage elements, shift registers, counting devices, and sequential logic circuits.

Corequisite: CEC 222.

CEC 222
Digital Circuit Laboratory (0,3)
1 Credit
Laboratory experiments in the measurement and verification of digital circuits. Discrete and integrated logic circuit design analysis and measurements.

Corequisite: CEC 220.

CEC 320
Microprocessor Systems (3,0)
3 Credits
Study of digital computer organizations. Introduction to microcomputer systems using a current microprocessor. Assembly language programming techniques for microcomputers will be used to study digital computer operation. Input and output techniques, memory devices, RS 232, and other interfacing techniques will be studied. Hardware and software relationships will also be discussed.

Prerequisites: CEC 220, CS 125.

Corequisite: CEC 322.
CEC 322
Microprocessor Systems Laboratory (0,3)
1 Credit
Hands-on experience with a microprocessor is provided through weekly experiments involving hardware and software techniques.
Corequisite: CEC 320.

CEC 420
Computer Systems Design I (2,3)
3 Credits
This is the first course in the senior project sequence (CEC 420 and CEC 421). This course introduces students to discussing issues of management, planning, task assignment, resource allocation, requirement collection, and system specification and design. The team working in a distributed environment will develop a base for implementation of a computer-centered system with elements of both hardware and software. The artifacts developed during this course will be used as the foundation for further development during the second course (CEC 421) in the sequence.
Prerequisites: CEC 320, CEC 322.
Corequisite: EE 401.

CEC 421
Computer Systems Design II (1,6)
3 Credits
This is the second course in the senior project sequence (CEC 420 and CEC 421). This course continues with project development, focusing on issues of detailed design, modularization, component selection, coding, assembling, and testing. The team working in a distributed environment will implement and test a computer-centered system with elements of both hardware and software.
Prerequisites: CEC 420, EE 401.

CEC 450
Real-Time Systems (3,0)
3 Credits
The course introduces the concepts of real-time systems from the user and designer viewpoint. The requirements, design, implementation, and basic properties of real-time application software are described with an overview of system software. Related topics such as interrupts, concurrent task synchronization, sharing resources, and software reliability are discussed. A team project on a real-time prototype application may be incorporated in the course.
Prerequisites: CS 125, CEC 320, CEC 322.
Corequisite: CS 420.

CEC 460
Telecommunications Systems (3,0)
3 Credits
Techniques and applications in telecommunications. Types of data communication versus line discipline methodology. Hardware requirements and constraints. Speed versus quality. Security and encoding algorithms.
Prerequisites: CEC 320, CEC 322.

CEC 470
Computer Architecture (3,0)
3 Credits
This course describes in detail the Von Neumann computer architecture, which includes processors, memory, input/output, and transfer of information. Examples of machine language, assembly language, microprogramming, and operating system will be discussed. Additional topics in advanced computer architectures and computer systems will be covered.
Prerequisites: CEC 320, CEC 322.

CEC 299 - 499
Special Topics in Computer Engineering
1-6 Credits
Directed studies of selected topics in computer engineering.
Prerequisite: Consent of instructor and department chair.

Communication

COM 020
Fundamentals of Communication (4,0)
4 Credits
Designed to improve the student’s reading and writing abilities through focusing on critical thinking. All three skills are approached as facets of each other and as processes that the student learns to control and take responsibility for. The fundamentals of grammar, punctuation, and sentence structure are strengthened when students write and revise multi-paragraph expository essays. A grade of C is required to pass this course, and it may not be dropped.
(Credit is not applicable to any degree.)
Undergraduate Course Descriptions

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM 122</td>
<td>English Composition and Literature (3,0)</td>
<td>3</td>
<td>Satisfactory completion of basic skills requirements.</td>
</tr>
<tr>
<td>COM 219</td>
<td>Speech (3,0)</td>
<td>3</td>
<td>COM 122.</td>
</tr>
<tr>
<td>COM 221</td>
<td>Technical Report Writing (3,0)</td>
<td>3</td>
<td>Any course from the HU 140 series.</td>
</tr>
<tr>
<td>COM 222</td>
<td>Business Communication (3,0)</td>
<td>3</td>
<td>Any course from the HU 140 series.</td>
</tr>
<tr>
<td>COM 223</td>
<td>Intelligence Writing (3,0)</td>
<td>3</td>
<td>Any course from the HU 140 series.</td>
</tr>
<tr>
<td>COM 225</td>
<td>Science and Technology Communication (3,0)</td>
<td>3</td>
<td>Any course from the HU 140 series.</td>
</tr>
<tr>
<td>COM 230</td>
<td>Digital Photography (3,0)</td>
<td>3</td>
<td>Sophomore standing or permission of the program coordinator.</td>
</tr>
<tr>
<td>COM 260</td>
<td>Introduction to Media (3,0)</td>
<td>3</td>
<td>Any course from the HU 140 series.</td>
</tr>
</tbody>
</table>

COM 122

English Composition and Literature (3,0)
3 Credits
This course focuses on principles of writing in response to readings in the humanities, social sciences, and other interdisciplinary fields. Students develop their communicative, evaluative, critical thinking, and research writing abilities through the close examination of key texts across those disciplines.

Prerequisite: Satisfactory completion of basic skills requirements.

COM 219

Speech (3,0)
3 Credits
A continuation of the study of communication and communication theory with emphasis on overcoming communication apprehension, developing listening skills, mastering oral performance, and writing about communication. Individual sections may focus on public speaking, group discussion, oral interpretation, or interpersonal communication. Section emphasis varies by instructor and is listed in the Schedule of Courses.

Prerequisite: COM 122.

COM 221

Technical Report Writing (3,0)
3 Credits
Preparation of formal and informal technical reports, abstracts, resumes, and business correspondence. Major emphasis placed on the long technical paper and the acquisition of advanced writing skills.

Prerequisite: Any course from the HU 140 series.

COM 222

Business Communication (3,0)
3 Credits
An introduction to effective business communication. Topics in oral, written, nonverbal, and intercultural communication are covered. Research methods, effective speaking, and the preparation of letters, memoranda, and reports are emphasized.

Prerequisite: Any course from the HU 140 series.

COM 223

Intelligence Writing (3,0)
3 Credits
The purpose of this course is to teach the basic skills of intelligence writing. The most essential principle of intelligence writing is to communicate to the reader exactly the message the analyst wants to communicate. Clarity, precision, accuracy, and brevity are key elements of intelligence writing, but also crucial is the overall structure of the intelligence brief. Two further elements are part of the intelligence writing process: a capacity to accurately evaluate information and an ability to make analytical judgments about the significance of a development. All these elements will be covered intensively as part of the intelligence writing process.

Prerequisite: Any course from the HU 140 series.

COM 225

Science and Technology Communication (3,0)
3 Credits
This course introduces the practices of communicating news and issues in science and technology to a variety of publics through magazine-style writing and public speaking. Guest speakers will present research questions, methodologies, and issues within the sciences. Coursework also includes readings from successful science and technology communicators, illustrating various solutions to writing about complex subjects. Special topics include identifying science and technological stories, evaluating sources and information, and communicating findings clearly, comprehensibly, and accurately for publication and speaking engagements.

Prerequisite: COM 221.

COM 230

Digital Photography (3,0)
3 Credits
This course introduces fundamental photographic skills through digital technologies. Emphasis is placed on the tools, techniques, and aesthetics of a range of photographic applications pertaining to graphic design and interactive media.

Prerequisite: Sophomore standing or permission of the program coordinator.

COM 260

Introduction to Media (3,0)
3 Credits
The structure of, professional opportunities in, and social issues arising from media industries. Required of all Communication students. Must be taken within the first year of entering the program.

Prerequisite: COM 122.
COM 320
Mass Communication Law and Ethics (3,0)
3 Credits
This course is based on case studies introducing students to the legal and ethical environments underpinning First Amendment rights in the United States from the nation’s founding to the present. Topics in law include intents of the framers, prior restraint, libel, privacy, hate speech, freedom of information laws, shield laws, and copyright. Topics in ethics concentrate on models for decision-making in difficult situations. Practices of journalists, media relations practitioners, and Internet communicators will be examined. Topics in ethics concentrate on models for decision-making in difficult situations.
Prerequisite: COM 221.

COM 322
Aviation and Aerospace Communication (3,0)
3 Credits
This course introduces the practices of communicating news and issues in aviation and aerospace to a variety of publics through magazine-style writing and public speaking. Students will learn how to recognize the news value of contemporary aviation issues, to gain an understanding of those issues through research and interviews with experts, and to write about and discuss the issues. Coursework also includes readings from respected aviation writers that illustrate aviation’s economic and social impact on society. Special topics include safety, airport security and congestion, emerging legal issues, and international aviation trends.
Prerequisite: COM 221.

COM 350
Environmental Communication (3,0)
3 Credits
This course centers on national and regional environmental issues, including planning, regulation, and crises. Topics include responses to climate change, endangered species, wetlands preservation, coastal development, and hazardous materials regulation. Field trips and guest speakers will be included. Students learn how to research and write articles and stories for nature and environmental magazines as well as general-audience media.
Prerequisite: COM 221 or COM 225.

COM 351
Journalism (3,0)
3 Credits
Theory and practice of the techniques of journalism, familiarizing the student with the functions, skills, and responsibilities required in writing, editing, and producing news and technical publications.
Prerequisite: Any course from the HU 140 series.

COM 410
Advanced Professional Writing (3,0)
3 Credits
A sophisticated process approach to strategies for effective communication in the workplace. Balancing theory and practice in professional communication, students will work singly and in collaborative teams to integrate visuals, layout and design, editing and review systems, online documentation, and electronic publishing. All assignments carry written components with equal emphasis placed on oral execution.
Prerequisites: COM 219, and either COM 221, COM 222, or COM 223.

COM 411
Web Design Workshop (3,0)
3 Credits
In addition to highlighting theories of communication related to design and content, this course serves as a practical workshop in Web site development, with an emphasis on communicating science and technology in a professional context. In close consultation with the professor, students design and produce Web sites for University programs, departments, non-profit organizations, and businesses. Experience with Web development software is recommended.
Prerequisites: COM 221, COM 222, or an equivalent professional writing course.

COM 412
Advanced Technical Writing (3,0)
3 Credits
Communication specific to the technical communication profession is studied, and students prepare at least one formal project suitable for inclusion in a career portfolio. The projects may include, but are not limited to, the following: technical manual, grant or business proposal, product development and documentation, multimedia training or product presentation, training modules, and corporate reports. Projects may be in paper, electronic, or combination of multimedia formats, depending on trends in the profession and use of
Undergraduate Course Descriptions

COM 415
Non-Verbal Communication (3,0)
3 Credits
This course entails the study of communication behaviors and processes not involving the expression of written or spoken words, which contribute information to a message. Special attention is directed to the study of voice qualities; facial expression and body language; space, personal distance, and touch; the use of time and objects; and personal appearance. Study also involves non-verbal communication in applied settings, as well as research strategies for observing, measuring, and understanding non-verbal phenomena.
Prerequisites: COM 219, equivalent Speech Communications course. (Also offered as HU 415. Students receive either Communication or Humanities credit, but not both.)

COM 420
Advanced Technical Communications I (1,0)
1 Credit
A study of applied technical communication with emphasis on communication standards of the aerospace industry, including participating in meetings, conducting informal briefings, resolving interpersonal conflicts, writing varied technical documents and making formal presentations. Section emphasis varies by instructor.
Prerequisite: COM 221.
Corequisite: This course must be taken concurrently with Preliminary Design courses offered by the AE\ME programs.

COM 430
Advanced Technical Communications II (2,0)
2 Credit
A continuation of Advanced Technical Communication I, this course focuses on informal and formal technical reports and briefings. Major emphasis is placed on public speaking and formal writing skills according to aerospace industry standards. Section emphasis varies by instructor.
Prerequisite: COM 420.
Corequisite: This course must be taken concurrently with Detail Design courses offered by the AE\ME programs.

COM 440
Senior Employment Practicum (1,0)
1 Credit
Open only to Communication majors. Preparation and evaluation of resumes, employment correspondence, portfolios, and mock employment interviews. Must be taken the semester after completing 88 hours.
Prerequisite: COM 226.

Computer Science

CS 118
Fundamentals of Computer Programming (3,0)
3 Credits
Introduction to basic concepts of structured programming with applications in business, technology, and engineering. This course is intended for the student with little or no experience in programming.

CS 125
Computer Science I (3,3)
4 Credits
Introduction to problem-solving methods, algorithm development, and software engineering; software development process, program design, coding, review, testing, and documentation; and programming using a modern programming language that supports modular development. The course has a closed laboratory that includes activities dealing with the computing environment, the software development process, and programming exercises.
Prerequisite: Proficiency in high school pre-Calculus mathematics.

CS 222
Introduction to Discrete Structures (3,0)
3 Credits
An introduction to the fundamental algebraic, logical, and combinatorial concepts of mathematics that provide a foundation for the study of computer science.
Prerequisites: Experience in programming in a high-level language, pre-Calculus mathematics.

CS 225
Computer Science II (3,3)
4 Credits
This course emphasizes program design, style, data abstraction, information hiding, and testing; advanced programming features; and introduction to object-oriented concepts, basics of algorithm analysis, exception handling, string processing, recursion,
pointers, and simple data structures. The course has a closed laboratory that includes activities dealing with the computing environment, the software development process, and programming exercises.

Prerequisite: CS 125.

CS 235

Assembly Language Programming (3,0)

3 Credits

Introduction to computer architecture; assembler concepts and instruction format; addressing techniques; interrupt processing, especially input/output; segmentation, linkage, and external procedures; programming projects to develop understanding of assembly language concepts.

Prerequisites: CS 220, CS 225.

CS 303

Network Security (3,0)

3 Credits

This course introduces the principles and algorithms of modern encryption and some major issues and problems of computer security. Topics covered include the notion of block ciphers and implementations such as DES and Blowfish. Modern public key encryption techniques such as the RSA algorithm. Statistical attacks on encryption including traffic monitoring. Hash functions. Digital signatures and authentication methods. An introduction to some attacks and defenses such as viruses, worms, and firewalls. This course is intended to be a required course in an Information Security minor or a technical elective for students majoring in Computer Science or Computer Engineering.

Prerequisites: MA 242 or CS 222 or consent of the instructor. CS 225 or consent of the instructor. Junior status or consent of the instructor.

CS 308

Practicum (3,0)

3 Credits

This capstone project course is individualized to each student and uses most facets of their prior instruction.

Prerequisite: All other courses required in the computer applications minor.

CS 315

Data Structures and Analysis of Algorithms (3,0)

3 Credits

This course emphasizes the design, implementation, and analysis of algorithms dealing with searching, sorting, graphs, trees, and disk files.

Prerequisites: CS 125, CS 222.

CS 317

Files and Database Systems (3,0)

3 Credits

Introduction to file and database systems. The course will cover the theory of database systems, various database models, and the design of a database system. Course homework will reflect real-life problems requiring cooperation, problem formulation, and problem-solving skills. A team/group term project may be assigned.

Prerequisites: CS 222, CS 225.

CS 325

Programming in ADA (3,0)

3 Credits

Advanced systems concepts using the ADA language to implement software engineering, concurrent programming, and structured design techniques.

Prerequisites: CS 210, CS 225, or permission of the instructor.

CS 332

Organization of Programming Languages (3,0)

3 Credits

A comparative study of different programming paradigms. Students program in several languages chosen to illustrate the essential features of the paradigms studied. Formal language concepts are also introduced.

Prerequisites: CS 222, CS 225.
CS 335
Introduction to Computer Graphics (3,0)
3 Credits
Introduction to computer graphics, algorithms, graphics programming, graphics design, use of graphic packages, and applications of computer graphics to aviation, business, and scientific problems. A term project involving a graphics programming application may be assigned.
Prerequisites: MA 241 and a proficiency in implementation language.

CS 350
Computer Modeling and Simulation (3,0)
3 Credits
Introduction to the basic aspects of modeling and simulation. Topics include statistical models, queuing theory, random variate generation, simulation languages, object-oriented programming, graphic output with animation, design and analysis of experiments, and verification and validation of simulation models. A term project involving the simulation of an element of aviation or aerospace may be assigned.
Prerequisites: MA 222 or MA 412, a proficiency in computer programming, and junior/senior standing.

CS 375
Algorithms (3,0)
3 Credits
This course covers strategies, mathematics, implementations, and performance properties of fundamental algorithms employed in computer science.
Prerequisites: CS 315 and MA 242 or permission of instructor.

CS 415
Human-Computer Interfaces (3,0)
3 Credits
This course introduces Computer Science students to several important aspects of how humans use computers and how software is designed for usability. Students are introduced to usability issues, graphical systems, and graphical interfaces.
Prerequisite: SE 320 or permission of the instructor.

CS 420
Operating Systems (3,0)
3 Credits
Development, structure, and functions of operating systems; demand service models; development of concurrent models.
Prerequisites: CS 125 and junior standing.

CS 425
Net-Centric Computing (3,0)
3 Credits
This course introduces Computer Science students and other engineering majors to areas of software and computer science that pertain to networks and network-based computation.
Prerequisites: CEC 320 and CS 317 or permission of instructor.

CS 432
Information and Computer Security (3,0)
3 Credits
The course will start with an overview of the larger context of information security, including the “softer” aspects of personnel and operational security, and then delve into the technical basis and practical difficulties of COMPSEC itself. This course is intended to be a required course in an Information Security minor or a technical elective for students majoring in Computer Science or Computer Engineering.
Prerequisites: CS 420 or consent of the instructor. Junior status or consent of the instructor.

CS 455
Artificial Intelligence (3,0)
3 Credits
This course introduces students to the basic concepts of artificial intelligence with emphasis on knowledge engineering. Students gain experience through individual and group exercises in the various phases of system development: planning, requirements and specification, design, implementation, and testing. Students study and apply commercial tools to the development of knowledge-base systems in the aerospace and aviation domain.
Prerequisite: CS 222 or permission of instructor.

CS 299 - 499
Special Topics in Computer Science
1-6 Credits
Individual independent or directed studies of selected topics in computer science.
Prerequisites: Consent of the instructor and the department chair.
Economics

EC 210
Microeconomics (3,0)
3 Credits
An introduction to the economic principles of free enterprise supply and demand, private and social implications of profit maximization, market structure, and resource markets. Current microeconomic issues in aviation (such as liability reform, evolution of airline competition, etc.) are discussed.

EC 211
Macroeconomics (3,0)
3 Credits
An introductory analysis of employment, inflation, recession, GDP economic growth, and international trade with an emphasis on practical policy alternatives. Macroeconomic aviation applications such as the counter-cyclical growth of start-up airlines and consideration of ATC privatization are incorporated.

EC 225
Engineering Economics (3,0)
3 Credits
An introduction to microeconomic principles, problems, and policies as well as basic financial principles such as time value of money, capital budgeting, and cost of capital. The course will provide the engineering graduate with the tools needed for success in the workplace.

EC 312
Money and Banking (3,0)
3 Credits
A preliminary investigation of the financial institutions of the U.S. and the relationship of monetary policy to income and price stabilization. Some analysis of international capital flows will also be undertaken.
Prerequisite: EC 210.

EC 315
Managerial Economics (3,0)
3 Credits
An analytical approach to the manager’s role in understanding pricing, costing, production, and forecasting. Concentrates on simple quantitative models to explain the firm’s position in the market and how the manager can react to and control this information. Aviation topics commonly discussed include airport privatization and employee ownership of airlines.
Prerequisite: EC 210.

EC 420
Economics of Air Transportation (3,0)
3 Credits
A study of the economic aspects of airline service with consideration given to the impact of federal aid and regulation, types of aircraft, airport problems, consumer interests, and competitive practices.
Prerequisite: EC 210.

EC 299 - 499
Special Topics in Economics
1-4 Credits
Individual independent or directed studies of combinations of selected topics in economics.
Prerequisite: Consent of the instructor and the department chair.

Electrical Engineering

EE 223
Linear Circuits Analysis I (3,0)
3 Credits
Corequisites: EE 224, MA 345, PS 250.

EE 224
Electrical Engineering Laboratory I (0,3)
1 Credit
Problem sessions, electrical instrumentation and measurement, verification of theory presented in EE 223, working knowledge of electronic test equipment.
Corequisite: EE 223.

EE 302
Electronic Devices and Circuits (3,0)
3 Credits
Introduction to basic semiconductor theory and semiconductor device characteristics. Diode and transistor models used in the analysis and design of electronic circuits. Basic amplifier circuits. Single and multi-stage amplifier analysis, design, and frequency response. Integrated circuit implementation of differential stages and operational amplifier circuits.
Prerequisite: EE 223.
Corequisite: EE 304.
Undergraduate Course Descriptions

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 304</td>
<td>Electronic Circuits Laboratory (0,3)</td>
<td>1</td>
<td>Laboratory experiments in the measurement of electronic device characteristics. Design of biasing networks, small signal amplifiers, and switching circuits. Corequisite: EE 302.</td>
</tr>
<tr>
<td>EE 309</td>
<td>Signal and Linear System Analysis (4,0)</td>
<td>4</td>
<td>This course includes discussions of signals and systems, convolution, continuous time signals, spectra of continuous time signals, time-domain and spectral analysis of continuous time signals, Laplace transforms, discrete time signals, spectra of discrete time signals, time-domain and spectral analysis of discrete time signals, and the Z-transform. Prerequisite: EE 223. Corequisite: MA 441.</td>
</tr>
<tr>
<td>EE 336</td>
<td>Electrical Engineering Laboratory I (0,3)</td>
<td>1</td>
<td>Laboratory experiments and techniques in electrical engineering. The Electrical Engineering Lab EE 336 must be taken during the same semester as EE 335. Prerequisite: PS 253.</td>
</tr>
<tr>
<td>EE 340</td>
<td>Electric and Magnetic Fields (3,0)</td>
<td>3</td>
<td>Electrostatics and magnetostatics. Study of magnetic and dielectric material properties; Maxwell’s equations; energy and radiation of plane waves. Introduction of electromagnetic waves, transmission lines, the Smith chart, and radiation from antennas. Prerequisites: MA 441, PS 250.</td>
</tr>
<tr>
<td>EE 401</td>
<td>Control Systems Analysis and Design (3,0)</td>
<td>3</td>
<td>Modeling, analysis, and design of analog and digital linear control systems using time and frequency domain techniques. Topics include feedback control system characteristics performance analysis and stability, Z-transforms, and controller design. Prerequisite: EE 303 or EE 309. Corequisite: EE 402.</td>
</tr>
<tr>
<td>EE 402</td>
<td>Control Systems Laboratory (0,3)</td>
<td>1</td>
<td>Laboratory experiments involving the principles of operation and design of linear control systems. Experiments to support theory introduced in EE 401. Corequisite: EE 401.</td>
</tr>
<tr>
<td>EE 407</td>
<td>Digital Signal Processing Laboratory (3,0)</td>
<td>1</td>
<td>Analog and digital filter design using MATLAB. Digital filter implementation with C programming and assembly code. Input/output, filtering, and waveform generation with a 32-bit floating-point DSP development system. Corequisite: EE 406.</td>
</tr>
<tr>
<td>EE 410</td>
<td>Communication Systems (3,0)</td>
<td>3</td>
<td>Theory and application of electronic communication systems; spectral analysis; modulation and demodulation techniques; transmitting and receiving systems. Behavior of receivers and transmitters in the presence of noise. Study of avionic radio systems cur-</td>
</tr>
</tbody>
</table>
Currently in use, such as NAV, COMM, DME, ATCRBS, ILS, and others.

Prerequisites: EE 303 or EE 309, EE 340.
Corequisite: EE 412.

EE 412

Communication Systems Laboratory (0,3) 1 Credit
Laboratory experiments involving design and analysis of electronic communication circuitry and measuring performance characteristics and limitations of various communication components and systems.
Corequisite: EE 410.

EE 420

Avionics Preliminary Design (3,0) 3 Credits
Study of FAA requirements governing design of airborne electronic equipment. Study of component and subsystem specification and design practices. Application of the above in the preparation of a proposal/design plan for an airborne electronic/electronic subsystem. Integrate the knowledge gained throughout the curriculum with practical aspects of the practice of engineering to enable the student to comprehend engineering as a pivotal aspect of the business cycle and to responsibly participate in society by the practice of his/her profession. The course will introduce the combination of hardware and software requirements and preliminary design, preparation of project, and testing plans following established industry standards.
Prerequisites: CEC 320, CEC 322.
Corequisites: EE 401, EE 410.

EE 421

Avionics Detail Design (3,0) 3 Credits
Continuation of EE 420. Senior-level project. Students will work as members of a team in the execution of winning proposals from EE 420/428. The course incorporates the combination of hardware and software detailed design, implementation, and testing following established industry standards.
Prerequisites: EE 401, EE 410, EE 420.

EE 450

Elements of Power Systems (3,0) 3 Credits
Electrical power conversion and control. Use of electronic devices as switches. Power computations for linear and nonlinear circuits, single and three-phase power distribution, and transformers. Controlled and uncontrolled rectification. AC voltage controllers, DC-DC converters, DC power supplies, DC-AC inverters, and resonant converters.
Corequisite: EE 452.

EE 452

Power Systems Laboratory (0,3) 1 Credit
Laboratory projects in power conversion and control. Measurement techniques of average and apparent power, power factor, average and RMS voltage and current, and harmonics. PWM control circuits, power electronic circuit design, and thermal management techniques.
Corequisite: EE 450.

EE 460

Advanced Controls and System Integration (3,0) 3 Credits
Continuation of EE 401. Study of modern control methods including state variables, controllability and observability, and modern design techniques. Integration of avionics systems by different avionics bus protocols including ARINC-429, ARINC-629, Mil Std 1553, and RS-232. Study of avionics systems common to modern aircraft. Design project.
Prerequisite: EE 401 or equivalent.

EE 299 - 499

Special Topics in Electrical Engineering 1-6 Credits
Directed studies of selected topics in electrical engineering.
Prerequisite: Consent of instructor and department chair.

Engineering

EGR 101

Introduction to Engineering (1,2) 2 Credits
An introduction to the interdisciplinary aspects of the engineering of aerospace systems. This is a project-based course demonstrating how aerospace engineering, electrical engineering, computer engineering, civil engineering, and software engineering are combined to produce results. Students are involved in an array of conceptual exercises, simple design activities, and projects dealing with engineering in aerospace-related areas.
Undergraduate Course Descriptions

EGR 115
Introduction to Computing for Engineers (3,0)
3 Credits
This is an introductory course in programming and computing for scientists and engineers. The course introduces students to the following aspects of software engineering: specification, requirements, design, code, and test. This course uses a problem-solving approach for developing algorithms. The following topics will be included: data types and related operations, looping, decision, input/output, functions, arrays, files, and plotting.

Prerequisite: Pre-Calculus or permission of the instructor.

EGR 200
Computer Aided Conceptual Design of Aerospace Systems (2,3)
3 Credits
Application and use of a high-end computer-aided design (CAD) tool for graphical communication of conceptual engineering designs. Includes definition of standards and conventions for generating part and assembly drawings as well as introductory methods for creating and documenting conceptual aerospace systems design.

Prerequisite: EGR 101, PS 150.

Engineering Physics
A grade of C or better is required in MA 241, MA 242, and either PS 150 or PS 215 and PS 216 for entry into all EP courses. A passing grade in all prerequisite courses or department consent is required for entry into all EP courses.

EP 199 - 499
Special Topics in Engineering Physics
1-4 Credits
Individual, independent, or directed study of topics in the fields of applied physics, space systems, and allied engineering disciplines. Student design projects involve significant engineering design such as microgravity experiments and moon-buggy design. May be considered as an engineering elective with approval of the program coordinator.

Engineering Science
A grade of C or better is required in MA 241, MA 242, and either PS 150 or PS 215 and PS 216 for entry into all ES courses. A passing grade in all prerequisite courses or department consent is required for entry into all ES courses.

ES 201
Statics (3,0)
3 Credits

Prerequisites: MA 242, PS 150, or PS 215.
Corequisite: EGR 115.

ES 202
Solid Mechanics (3,0)
3 Credits
The concepts of stress and strain and their tensor properties. Elastic stress-strain relations. Analysis of stress and deformation in members subject to axial, torsional, bending, and combined loading. Column stability.

Prerequisites: EGR 115, ES 201.

ES 204
Dynamics (3,0)
3 Credits
A vector treatment of the kinematics and kinetics of particles and rigid bodies. Acceleration, work, energy, power, impulse, and momentum.

Prerequisites: EGR 115, ES 201.
Corequisite: MA 345.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
</table>
Prerequisite: ES 201. |
Prerequisite: PS 150. |
Prerequisites: PS 160 or PS 208.
Corequisite: ES 206 |
| ES 306 | Fiber Optics (2.5,.5) | 3 | An introductory course on optical fiber technology and applications. Course covers optical waveguide theory (multi-mode and single-mode), light sources (LEDs and lasers), and light detectors and how these components work together to form an electro-optical system. Applications to communications, sensors, and aviation are studied. Some laboratory work, computer design, and literature research are required to broaden the student’s viewpoint and to achieve credit of engineering design.
Prerequisites: MA 441, PS 160. |
| ES 312 | Energy Transfer Fundamentals (3,0) | 3 | First and Second Laws of Thermodynamics for control masses and control volumes. Fundamentals of heat transfer: conduction, convection, and radiation. Application of energy balances.
Prerequisite: PS 160. |
| ES 315 | Space Environment and Effects (3,0) | 3 | This course studies the effects of the space environment on spacecraft and spacecraft design. The vacuum, neutral, plasma, radiation, and space debris environments and their effect on space missions are examined. Special emphasis is placed on investigating the effects of radiation on electrical spacecraft subsystems and the space debris environment.
Prerequisite: PS 250, junior standing, or instructor consent. |
Prerequisites: COM 221, ES 202, and PS 105 or PS 140.
Corequisite: ES 321. |
| ES 321 | Engineering Materials Science Laboratory (0,3) | 1 | Laboratory experiments and techniques in materials science, composites, and solid mechanics.
Corequisite: ES 320 |
| ES 403 | Heat Transfer (3,0) | 3 | One- and two-dimensional steady and unsteady state conduction heat transfer including an introduction to finite-difference and finite-element methods of...
Undergraduate Course Descriptions

Prerequisites: ES 206, ES 305, MA 345.

ES 412
Structural Dynamics (3.0)
3 Credits
Prerequisites: ES 202, ES 204, MA 345.

ES 413
Engineering Fundamentals Review (1.2)
1 Credit
This course is a review of fundamental engineering principles. Problem-solving tutorial sessions help engineering students prepare for the National Fundamental Engineering or Engineering-in-Training Examination.
Prerequisite: Senior status.

ES 299 - 499
Special Topics in Engineering Science
1-6 Credits
Individual independent or directed studies of selected topics in engineering science.
Prerequisites: Consent of instructor and department chair. May be repeated with change of content.

Flight-Airplane

FA 109
Intermediate Flight Transition and Procedural Familiarization
1 Credit
A review of elementary commercial pilot flight operations including basic aircraft control, elementary radio navigation, air traffic control procedure, cross-country operations, and solo flight. Associated ground instruction will include a review of knowledge areas required for Private Pilot certification. This course is specifically designed for students entering Embry-Riddle’s Commercial Pilot program with a Private Pilot certificate and desiring advanced standing.
Prerequisite: FAA Private Pilot Certification with Airplane Single-Engine Land Rating.

FA 119
Private Single Flight
1 Credit
During this course the student obtains the foundation for all future aviation training. The student will receive training in the maneuvers and procedures necessary for him/her to meet the standards contained in the FAA Private Pilot Practical Test Standards. Additionally, the student will receive training in safety awareness, crew resource management, and aeronautical decision-making. At the successful completion of this course the student will have gained the aeronautical experience necessary to attain a Private Pilot Certificate with an Airplane Single Engine Land Rating.
Corequisite: AS 119. **NOTE:** The FAA requires AS 119 to be completed at Embry-Riddle with a “C” or higher. Students who transfer credit for AS 119 will be required to complete additional ground training in FA 119 to meet the FAA requirement.

FA 122
Private Multi Flight with Laboratory
1 Credit
The student will receive training in the maneuvers and procedures necessary to meet the standards contained in the FAA Multi Engine Private Pilot Practical Test Standards. Additionally, the student will receive training in safety awareness, crew resource management, and aeronautical decision-making. At the successful completion of this course the student will have gained the aeronautical experience necessary to attain the addition of a Multi-Engine Rating for the Private Pilot Certificate.
Prerequisite: Chief Flight Instructor consent required prior to enrolling in this course.

FA 215
Upset Training
1 Credit
This flight course is designed to give certified pilots the experience and knowledge to immediately recognize aircraft upset situations and the skills to safely and precisely recover from such occurrences. This course will include flight recoveries from nose-high, nose-low, and inverted attitudes; spin entries and recoveries; and basic aerodynamic maneuvers.
Undergraduate Course Descriptions

FA 221

Instrument Single Flight
1 Credit
The student will receive training in the maneuvers and procedures necessary to meet the standards contained in the FAA Instrument Rating Practical Test Standards. Additionally, the student will receive training in safety awareness, crew resource management, and aeronautical decision-making. At the successful completion of this course, the student will have gained the aeronautical experience necessary to attain the addition of an Instrument Rating for the Private Pilot Certificate.
Prerequisite: Private Pilot Certificate with an Airplane Single Engine Land Rating (FA 119).
Corequisite: AS 221. NOTE: The FAA requires AS 221 to be completed at Embry-Riddle with a “C” or higher. Students who transfer credit for AS 221 will be required to complete additional ground training in FA 221 to meet the FAA requirement.

FA 222

Instrument Multi Flight
1 Credit
The student will receive training in the maneuvers and procedures necessary to meet the standards contained in the FAA Instrument Rating Practical Test Standards. Additionally, the student will receive training in safety awareness, crew resource management, and aeronautical decision-making. At the successful completion of this course, the student will have gained the aeronautical experience necessary to attain the addition of an Instrument Rating for the Private Pilot Certificate.
Prerequisite: Private Pilot Certificate with an Airplane Single Engine Land Rating (FA 119).
Corequisite: AS 221. NOTE: The FAA requires AS 221 to be completed at Embry-Riddle with a “C” or higher. Students who transfer credit for AS 221 will be required to complete additional ground training in FA 221 to meet the FAA requirement.

FA 321

Commercial Single Flight
1 Credit
The student will receive training in the maneuvers and procedures necessary to meet the standards contained in the FAA Commercial Pilot Practical Test Standards. Additionally, the student will receive training in safety awareness, crew resource management, and aeronautical decision-making. At the successful completion of this course, the student will have gained the aeronautical knowledge and skills necessary to attain a Commercial Pilot Certificate with an Airplane Single Engine Land Rating.
Prerequisite: Private Pilot Certificate with Airplane Single Engine Land and Instrument Airplane Ratings (FA 221).
Corequisite: AS 321. NOTE: The FAA requires AS 321 to be completed at Embry-Riddle with a “C” or higher. Students who transfer credit for AS 321 will be required to complete additional ground training in FA 321 to meet the FAA requirement.

FA 322

Commercial Multi-Flight
1 Credit
The student will receive training in the maneuvers and procedures necessary to meet the standards contained in the FAA Multi Engine Commercial Pilot Practical Test Standards. Additionally, the student will receive training in safety awareness, crew resource management, and aeronautical decision-making. At the successful completion of this course, the student will have gained the aeronautical experience necessary to attain a Commercial Pilot Certificate with an Airplane Multi Engine Land Rating.
Prerequisite: Private Pilot Certificate with Airplane Multi Engine Land and Instrument Airplane Ratings (FA 222).
Corequisite: AS 321. NOTE: The FAA requires AS 321 to be completed at Embry-Riddle with a “C” or higher. Students who transfer credit for AS 321 will be required to complete additional ground training in FA 322 to meet the FAA requirement.

FA 323

Commercial Multi-Add On
1 Credit
The student will receive training in the maneuvers and procedures necessary to meet the standards contained in the FAA Multi Engine Commercial Pilot Practical Test Standards. Additionally, the student will receive training in safety awareness, crew resource management, and aeronautical decision-making. At the successful completion of this course, the student will have gained the aeronautical experience necessary to attain the addition of a Multi-Engine Rating for the Commercial Pilot Certificate.
Prerequisite: Commercial Pilot Certificate with Airplane Single Engine Land and Instrument Airplane Ratings (FA 321).
FA 326
Commercial Single Add On Flight
1 Credit
The student will receive training in the maneuvers and procedures necessary to meet the standards contained in the FAA Commercial Pilot Practical Test Standards. Additionally, the student will receive training in safety awareness, crew resource management, and aeronautical decision-making. At the successful completion of this course, the student will have gained the aeronautical experience necessary to attain the addition of a Single Engine Rating for his/her Commercial Pilot Certificate.
Prerequisite: Commercial Pilot Certificate with Airplane Multi Engine Land and Instrument Airplane Ratings (FA 322).

FA 370
Advanced Multi-Engine Instrument Flight
1 Credit
Introduction to autopilot and flight director operations to further develop instrument piloting skills to the ATP level. In addition, the student is introduced to advanced cross-country operations, with emphasis on precision flying skills and the use of automated flight management systems in an IFR environment.
Prerequisite: Commercial Pilot Certificate with Airplane Multi Engine Land and Instrument Airplane Ratings (FA 322 or FA 323).

FA 418
Flight Instructor Rating
1 Credit
Certified Commercial and Instrument rated multi-engine pilots are provided extensive detailed instrument-oriented training to airline transport proficiency standards. Emphasis is placed on precision attitude flying techniques including configuration change procedures, attitude and thrust setting determination, and velocity transitions; precise instrument approach and departure procedures; and integration of applicable emergency procedures during all phases of instrument flight.
Prerequisite: FAA Commercial Pilot Certificate with Airplane Single- and Multi Engine and Instrument Ratings.

FA 421
Flight Instructor Rating
1 Credit
The student will receive training in the maneuvers and procedures necessary for him/her to meet the standards contained in the Flight Instructor practical test standards, Single-Engine Land with Instrument Airplane rating. Additionally, the student will receive training in cockpit resource management and safe flying practices. Associated ground instruction will include completion of the Fundamentals of Instruction, the Flight Instructor Airplane, and the Flight Instructor Instrument written test.
Prerequisite: FAA Commercial Pilot Certificate with Single-Engine and Instrument Rating (FA 321 or FA 326).
Corequisite: AS 421. NOTE: The FAA requires AS 421 to be completed at Embry-Riddle with a “C” or higher. Students who transfer credit for AS 421 will be required to complete additional ground training in FA 421 to meet the FAA requirement.

FA 422
Airline Flight Crew Techniques and Procedures
1 Credit
Instruction in airline flight crew operations with emphasis on the transition of the professionally qualified pilot into a highly skilled member of an air carrier flight management team.
Prerequisites: Commercial Pilot Certificate with Multi-Engine/Instrument Airplane Rating, AS 387, AS 435.
Corequisite: AS 420.

FA 460
Multi-Engine Flight Instructor Rating
2 Credits
The student will receive training in the maneuvers and procedures necessary for him/her to meet the FAA standards required to add the Multi-Engine Flight Instructor Rating to his/her CFI/I Rating. Additional instruction will be provided in advanced multi-engine flight crew training techniques including cockpit resource management and safe flying practices.
Prerequisites: FA 421 or FAA Commercial Pilot Certificate with Airplane Multi-Engine Land and Instrument-Airplane Ratings and a FAA Flight Instructor Certificate with an Instrument Airplane Rating.

FA 199 - 499
Special Topics in Flight
0-2 Credits
Flight training in selected areas for the purpose of gaining proficiency in required pilot operations for various certificates and ratings.
Prerequisites: Approval of chief flight instructor and department chair.
Flight-Helicopter

FH 142
Helicopter Pilot Flight Private
1 Credit
The student will receive the required training in the basic aerodynamic fundamentals of helicopter flight including maneuvers and procedures necessary for the student to meet the standards as described in the FAA Private Rotorcraft Practical Test Standards. In addition, the student will receive training in safety awareness, and aeronautical decision making. At the successful completion of this course, the student will have gained the aeronautical knowledge and experience necessary to attain a Private Pilot Certificate with a Rotorcraft Rating.

Corequisite: AS 142

FH 145
Intermediate Helicopter Flight Transition and Procedural Familiarization
1 Credit
A review of elementary commercial pilot flight operations including basic rotorcraft control, elementary radio navigation, air traffic control procedures, cross-country operations, and solo flight. Associated ground instruction will include a review of knowledge areas required for Private Pilot Helicopter certification. This course is specifically designed for students entering Embry-Riddle’s Commercial Helicopter Pilot Program with a Private Pilot certificate and desiring advance standing.

Prerequisite: FAA Private Pilot Helicopter Certification.

FH 252
Helicopter Pilot Flight Instrument
1 Credit
The student will receive the required training in the maneuvers and procedures necessary to meet the standards in the FAA Instrument-Rotorcraft Practical Test Standards. In addition, the student will receive training in safety awareness and hazardous weather. At the successful completion of this course, the student will have gained the aeronautical knowledge and experience necessary to attain an Instrument Rating for a Private Pilot – Rotorcraft Certificate.

Prerequisite: Private Pilot Certificate with a Rotorcraft - Helicopter class rating (FH 142)

Corequisite: AS 252

FH 372
Helicopter Pilot Flight Commercial
1 Credit
The student will receive the required training in the maneuvers and procedures necessary to meet the standards in the FAA Commercial –Rotorcraft Practical Test Standards. In addition, the student will receive training in safety awareness and advanced helicopter operations. At the successful completion of this course, the student will have gained the aeronautical knowledge and experience necessary to attain a Commercial Pilot Certificate with a Rotorcraft Rating.

Prerequisite: Private Pilot Certificate with a Rotorcraft - Helicopter class and Instrument - Rotorcraft ratings (FH 252)

Corequisite: AS 372

FH 442
Helicopter Pilot Flight Instructor
1 Credit
The student will receive the required training in the maneuvers and procedures necessary to meet the standards in the FAA Certified Flight Instructor - Rotorcraft Practical Test Standards. In addition, the student will receive training in classroom instruction and best teaching practices. At the successful completion of this course, the student will have gained the aeronautical knowledge and experience necessary to attain a Certified Flight Instructor Certificate with a Rotorcraft Rating.

Prerequisite: Commercial Pilot Certificate with a Rotorcraft - Helicopter class rating (FH 372)

Corequisite: AS 442

Honors

HON 150
Honors Seminar I (3,0)
3 Credits
This course is open only to students enrolled in the Honors program, and will satisfy the lower-level Humanities requirement in general education. An interdisciplinary Humanities course, it focuses on aesthetic, philosophical, and historical aspects of a subject, making use of text materials from several disciplines and varied media. The course also emphasizes student participation in a seminar discussion format and requires that students develop their research, critical thinking, and oral and written communication abilities. Requirements will include (but will not be limited to) text and Web-based origi-
nal research, written essays, oral presentations, and participation in group discussion. Topics may vary according to instructor.

HON 250
Honors Seminar II (3,0)
3 Credits
This course is open only to students enrolled in the Honors program, and will satisfy three credits of the lower-level Social Sciences requirement in general education. The course focuses on material pertinent to one or more disciplines within the broad arena of the Social Sciences. Specific emphases will vary by instructor. The course also emphasizes student participation in a seminar discussion format and requires that students develop their research, critical thinking, and oral and written communication abilities. Requirements will include (but will not be limited to) text and Web-based original research, written essays, oral presentations, and participation in group discussion.

Prerequisite: HON 150.

HON 350
Honors Seminar III (3,0)
Honors Seminar III will satisfy either the Humanities or the Social Sciences upper-level elective requirement in general education. Building on the previous two Honors seminars, it will require students to further develop their ability to locate and assess primary and secondary research materials, to present effective verbal and written presentations that display more sophisticated research and presentational sensibilities, and to engage in discussion that is rooted in close reading of assigned and unassigned material. Whatever the specific course topic, the seminar will be an interdisciplinary exploration of the subject, will emphasize student participation in focused class discussion, and will foster further development of research, critical thinking, and oral and written communication abilities. Topics vary by instructor.

Prerequisite: HON 250.

Humanities
Note: Regional Studies (RS) courses are also considered Humanities (HU) courses and can be taken as Humanities electives.

The Humanities 140 Series
The HU 140 series constitutes an integral component of the University’s General Education program. This series offers students a variety of choices, with each course fulfilling a lower-level requirement in the humanities. Courses in the HU 140 series emphasize writing, reading, and appreciation skills and are designed to expose students to the complexity of human emotions and experiences. Students also explore the framework of historical and cultural contexts in which artistic and creative expressions have arisen.

In selecting a course from the HU 140 series, students have opportunities to concentrate their studies on one form of cultural expression, such as music, literature, or the visual arts. Others may opt for a course that provides a chronological examination of a cultural expression or a thematic approach to several disciplines in the humanities.

HU 142
Studies in Literature (3,0)
3 Credits
A continuation of COM 122 with emphasis on a survey of literature. Reading materials include selected novels, poems, and plays. Emphasizes writing, reading, and appreciation skills.

Prerequisite: COM 122.

HU 143
Introduction to Rhetoric (3,0)
3 Credits
A continuation of COM 122, HU 143 offers a broad survey of rhetorical theory and practice. Whether noble or base, rhetoric primarily uses language to achieve a desired end, usually persuasion. This course employs primary and secondary readings as a means to examine how rhetorical principles manifest themselves in a variety of cultural texts and to understand the powers of persuasion. Although instructors may choose various approaches to teaching this course, students should expect some exposure to classical rhetoricians.

Prerequisite: COM 122.
HU 144
Studies in Art (3,0)
3 Credits
A continuation of COM 122 with an emphasis on art. Provides a foundation in the basic vocabulary, concept, processes, and history of art. Works of art, sculpture, architecture, and film from various cultures are analyzed. Emphasizes writing, reading, and appreciation skills.

Prerequisite: COM 122.

HU 145
Themes in the Humanities (3,0)
3 Credits
A continuation of COM 122 with interdisciplinary emphasis. Through close reading of primary texts and analysis of visual and performing arts, Themes in the Humanities explores ideas central to the evolution of culture. The course is not restricted by period and is open to the full range of humanistic studies. Themes vary by instructor and are listed in the Schedule of Courses. Emphasizes writing, reading, and appreciation skills.

Prerequisite: COM 122.

HU 146
Music Appreciation and Criticism (3,0)
3 Credits
A continuation of COM 122 with an emphasis on listening to and writing about music. Elements of music (rhythm, meter, tempo, pitch, and pitch relationships), instruments of music, and musical forms. The course emphasizes Western classical music.

Prerequisite: COM 122.

HU 250
Introduction to Logic (3,0)
3 Credits
Principles of valid thinking; the nature of inductive and deductive inferences and their applications.

Prerequisite: Any course from the HU 140 series.

HU 300
World Literature (3,0)
3 Credits
Major works and literary trends in world literature. Course content varies by instructor and is listed in the Schedule of Courses.

Prerequisite: Any course from the HU 140 series.

HU 302
Contemporary Issues in Science (3,0)
3 Credits
This course bridges science and the humanities, examining how different disciplines approach problems of common interest. Students study selected contemporary issues such as stem cell use in medicine, evolution vs. intelligent design, imminent worldwide crises, DNA engineering, responses to climate change, and possible problems associated with autonomous machines and artificial intelligence. As they examine their own assumptions while participating in debates that encourage appreciation of other viewpoints, students demonstrate understanding of course topics in class discussion and formal papers. The course is team-taught by a Physical Sciences professor and a Communication professor, and will include guest experts on selected topics.

Prerequisite: COM 221.

HU 305
Modern Literature (3,0)
3 Credits
The mainstreams of literature of this century. Course content varies by instructor and is listed in the Schedule of Courses.

Prerequisite: Any course from the HU 140 series.

HU 310
American Literature (3,0)
3 Credits
A survey of intellectual backgrounds, major works, and literary trends in American literature. Course content varies by instructor and is listed in the Schedule of Courses.

Prerequisite: Any course from the HU 140 series.

HU 315
Drama Seminar (3,0)
3 Credits
Students are exposed to the theater arts and especially to performance. They acquire acting skill through class exercises and performance assignments. Dramatic literature is studied with special attention given to its stage applications. Students may participate either as actors or technicians in the theatrical production, which entails out-of-class rehearsal.

Prerequisite: COM 219.
HU 316
Studies in Music (3,0)
3 Credits
Musical works, musical instruments, and the important developments in the technology of making the music of a specific style, a group of related styles, or a historical sequence. Social and intellectual context of the music studied. Course content varies from semester to semester and is listed in the schedule of courses.
Prerequisite: Any course from the HU 140 series.

HU 319
Advanced Speech (3,0)
3 Credits
This course continues the study of oral communication with emphasis on effective public speaking. It includes the analysis and practice of modern and traditional methods of persuasion within and beyond the classroom.
Prerequisite: COM 219.

HU 320
Aesthetics of Visual and Musical Arts (3,0)
3 Credits
Provides a survey of the major artistic monuments of Western culture and discusses the methods by which artistic productions are analyzed.
Prerequisite: Any course from the HU 140 series.

HU 321
Mythology (3,0)
3 Credits
This course introduces the study of the myths of humankind, both ancient and modern, using perspectives and methods from archeology, anthropology, psychology, literature, and film. It explores what myths reveal about the human psyche and about historical and modern cultures. It builds facility in symbolic thinking and critical understanding of how this thinking influences contemporary literature, art, film, communication, and politics.
Prerequisite: Any course from the HU 140 series.

HU 325
Exploring Film (3,0)
3 Credits
A survey of the art of the film. History of the cinema. Basic elements, photography, continuity and rhythm, movement, imaging, music and sound, script writing, directing, editing, acting, great film artists/directors, cinematographers, actors, etc.
Prerequisite: Any course from the HU 140 series.

HU 330
Values and Ethics (3,0)
3 Credits
This course focuses on the process of practical ethics as a way of resolving moral conflict and of understanding professional responsibility in a multiculturally diverse society without devaluing specific viewpoints of ethical or metaphysical theory, ideology, or religion. Students will use proposals, value judgments, observation statements, assumptions, and alternate-world assumptions in arguing contemporary issues of moral importance. With this basic moral logic, students will resolve issues in terms of rights, responsibilities, and the community of rational beings in terms of consequences and contingencies and in terms of habituated virtues and character. Free and unrestricted discourse will be encouraged to let students find common ground in diversity.
Prerequisite: Any course from the HU 140 series.

HU 335
Technology and Modern Civilization (3,0)
3 Credits
A humanistic analysis of technology, with special attention to its influence on modern American culture in a global context. Topics include the history and development of technology, the influence of technology on certain philosophies such as determinism and utilitarianism, the influence of technology on the ecosphere, and the depiction of technology in imaginative literature.
Prerequisite: Any course from the HU 140 series.

HU 341
World Philosophy (3,0)
3 Credits
This course focuses on an investigation of some of the central problems of philosophical inquiry such as what we can know and what we cannot know, how we reason, who we are, why we are here, and what we can hope for. Freedom, beauty, knowledge and logical thinking, mind, morality, god or gods, religion, truth, death, and existence might be explored using a variety of sources, including but not limited to contemporary thinkers of the European and Anglo-American traditions. This course is designed to challenge assumptions and to help students deal with contemporary philosophical issues.
Prerequisite: Any course from the HU 140 series.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Description</th>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>HU 345</td>
<td>Comparative Religions (3,0)</td>
<td>3</td>
<td>A survey of the major religions of the world, beginning with a brief examination of the nature of religion and its study, as a vital aspect of human experience in history. This is followed by a survey of the eastern religions of Hinduism, Buddhism, Jainism, Taoism, Confucianism, and Shinto, and finally a survey of the monotheistic religions: Judaism, Christianity, Islam, and Sikhism.</td>
<td>Any course from the HU 140 series.</td>
</tr>
<tr>
<td>HU 355</td>
<td>Creative Writing (3,0)</td>
<td>3</td>
<td>The course culminates the interpretive and expressive elements of communications classes. The study, practice, and use of a personal style of creative composition and examples of contemporary literature and submittal of publications are included in this course.</td>
<td>Any course from the HU 140 series.</td>
</tr>
<tr>
<td>HU 361</td>
<td>Interpersonal Communication in the Work Group (3,0)</td>
<td>3</td>
<td>Examination of interpersonal and small-group communication topics to focus on maximizing decision making in work groups. Students are assigned to simulated consensus-driven groups. Evaluation is based on the quality of the groups’ decision making, exams, class participation, and presentation of the groups’ findings in a public setting.</td>
<td>COM 219.</td>
</tr>
<tr>
<td>HU 362</td>
<td>Communication and Organizational Culture (3,0)</td>
<td>3</td>
<td>Theory, survey, and application of research methods for the analysis of communication. Instructors may choose to apply methods in a variety of contexts, such as in-house publications, internal communication, speeches, and interview communication.</td>
<td>COM 219 and either COM 221, COM 222, or COM 223.</td>
</tr>
<tr>
<td>HU 363</td>
<td>Communication and Society (3,0)</td>
<td>3</td>
<td>An examination of human communication in a variety of cultural settings. Topics vary from semester to semester. Communication behavior is viewed expansively to include verbal discourse, symbolic imagery, nonverbal communication, literature, music, and other art forms. Focus is on understanding communication behavior as symbolic action, as constructive of social reality, and as a means for entry into cultural and sub-cultural group experience.</td>
<td>Junior standing or permission of professor.</td>
</tr>
<tr>
<td>HU 370</td>
<td>Advanced English Grammar (3,0)</td>
<td>3</td>
<td>This course introduces students to concepts of grammatical theory mainly at the level of syntax. Avoiding the niceties of linguistic distinctions, the course will introduce the student to usable concepts and terms that are also echoed in contemporary style checkers.</td>
<td>Junior standing.</td>
</tr>
<tr>
<td>HU 375</td>
<td>The Nature of Language (3,0)</td>
<td>3</td>
<td>This course provides a practical investigation into how people use language functions as a system of meaning. The diversity, complexity, and intrinsic fascination of this most human of behaviors is studied largely with reference to the English language. Topics include popular ideas about language, language and identity, language structure and system, language media, language acquisition and learning, language and the brain, and world languages.</td>
<td>COM 221 or COM 222 or COM 223.</td>
</tr>
<tr>
<td>HU 415</td>
<td>Non-Verbal Communication (3,0)</td>
<td>3</td>
<td>This course entails the study of communication behaviors and processes, not involving the expression of written or spoken words, contribute information to a message. Special attention is directed to the study of voice qualities; facial expression and body language; space, personal distance, and touch; the use of time and objects; and personal appearance. Study also involves nonverbal communication in applied settings, as well as research strategies for observing, measuring, and understanding non-verbal phenomena.</td>
<td>COM 219, equivalent Speech Communications course. (Also offered as COM 415. Students receive either Communication or Humanities credit, but not both.)</td>
</tr>
</tbody>
</table>
Undergraduate Course Descriptions

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Description</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>HU 420</td>
<td>Applied Cross-Cultural Communication</td>
<td>3</td>
<td>An examination of the challenges to communicating across the variety of subcultures present in work environments. Ethnicity, nationality, gender, physical impairment, and sexuality are among the areas of difference often present in business and professional environments that may influence the establishment of cooperative working relationships. Means for analyzing and developing strategies to transcend and make positive use of subcultural differences will be considered.</td>
<td>COM 219, and either COM 221, COM 222, or COM 223.</td>
</tr>
<tr>
<td>HU 475</td>
<td>Senior Thesis</td>
<td>3</td>
<td>As the culmination of the student’s experience in the Interdisciplinary Disciplinary or Global Security and Intelligence Studies majors, senior thesis requires the student to complete documented research under the guidance of the course instructor, involving subject matter that is demonstrably tied to at least two of the student’s three chosen minor fields of study. A series of seminar discussions or extended individual consultations with the course instructor may accompany the guided writing of the thesis. Additional faculty may be interviewed or consulted during the thesis project.</td>
<td></td>
</tr>
<tr>
<td>HU 480</td>
<td>Senior Thesis Research</td>
<td>1</td>
<td>Students will select a thesis committee and research problem, conduct appropriate research, and write and defend a thesis proposal and a full sentence outline. Course lectures will be integrated with faculty-guided workshops; topics include an overview of the thesis process; the development of a specific and contentious research problem; organization and format of the required thesis documents; citation standards; and appropriate academic language.</td>
<td>COM 221 or COM 222 or COM 223.</td>
</tr>
<tr>
<td>HU 485</td>
<td>Senior Thesis Writing</td>
<td>2</td>
<td>Students using the work completed in HU 480, Senior Thesis Research, write their senior thesis in a workshop environment, defending the thesis at the end of the semester. Topics include problem-solution organization, documentation, argumentation, and successful presentation strategies.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Description</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>HU 299 - 499</td>
<td>Special Topics in Humanities</td>
<td>1-6</td>
<td>Individual independent or directed studies of selected topics in the humanities.</td>
<td>Consent of instructor and approval of the department chair.</td>
</tr>
</tbody>
</table>

Information Technology

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Description</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>IT 109</td>
<td>Introduction to Computers and Applications</td>
<td>3</td>
<td>Introduction to computers and an overview of PC applications. Computer literacy is presented through lectures on the computer process, the impact of computers on society, emerging technologies, and how to make hardware and software purchasing decisions. A hands-on overview of the most popular computer applications such as word processing, spreadsheet, database, electronic mail, and Internet is provided.</td>
<td>Proficiency in college preparatory mathematics.</td>
</tr>
<tr>
<td>IT 210</td>
<td>Web Page Authoring and Design</td>
<td>3</td>
<td>This course will address the organization of the Internet, addressing, routing, DNS, and use of Internet applications. It will review such applications as FTP, telnet, and advanced Web searching methodology. This course covers Web page authoring and design techniques using both HTML and WYSIWYG authoring software. Students will study, create, and refine Web pages online as well as create Web graphics. Lastly, legal and ethical issues related to the Internet and emerging technologies are discussed.</td>
<td>IT 109 or BA 120, or BA 221 or CS 223, or approval.</td>
</tr>
</tbody>
</table>
Interdisciplinary Studies

IS 100
Interdisciplinary Studies - Issues in Facing the Future (3,0) 3 Credits
This is an introductory interdisciplinary course examining the demands and problems that will confront our society, technology, science, institutions, and personal relations in the future. The course also examines the growing need for personal, institutional, and societal responsibility, change, and paradigm shift in order to meet these demands and problems.

IS 399
Special Topics in Interdisciplinary Studies 1-6 Credits
Individual independent or directed studies of selected topics in interdisciplinary studies.
Prerequisites: Consent of instructor and approval of the program chair.

Languages

LAR 101
Arabic I (3,0) 3 Credits
Elementary oral-aural introduction to Arabic, including such topics as courtesy phrases, basic vocabulary, and patterns for questions and answers. Not open to students with two or more years of high-school instruction or the equivalent, or native speakers of the language.

LAR 102
Arabic II (3,0) 3 Credits
A continuation of LAR 101.
Prerequisite: LAR 101 or consent of the instructor.

LAR 201
Arabic III (3,0) 3 Credits
A continuation of LAR 102.
Prerequisite: LAR 102 or consent of the instructor.

LAR 202
Arabic IV (3,0) 3 Credits
A continuation of LAR 201.
Prerequisite: LAR 201 or consent of the instructor.

LAR 399, 499
Special Topics in Arabic Language 1-6 Credits
Individual independent or directed studies of selected topics in the Arabic language.
Prerequisites: Consent of instructor and approval of the department chair.

LCH 101
Mandarin Chinese I (3,0) 3 Credits
Introduction to the Mandarin Chinese language, including the pronunciation system (pin yin), basic grammar, simplified or traditional character writing and reading, and speaking simple sentences, as well as cultural contexts inseparable from the language.
Note: Open only to those without prior knowledge of Mandarin Chinese or with consent of the instructor.

LCH 102
Mandarin Chinese II (3,0) 3 Credits
A continuation of LCH 101.
Prerequisite: LCH 101 or consent of instructor.

LCH 103
Mandarin Chinese I & II (6,0) 6 Credits
Introduction to the Mandarin Chinese language, including the pronunciation system (pin yin), basic grammar, simplified or traditional character writing and reading, and speaking from single sentences to sentence strings, as well as cultural contexts inseparable from language use. Open only to those without prior knowledge of Mandarin Chinese or with consent of the instructor.
Note: Open only to those without prior knowledge of Mandarin Chinese or with consent of the instructor.

LCH 201
Mandarin Chinese III (3,0) 3 Credits
A continuation of LCH 102 with emphasis on communicative abilities in listening, speaking, reading, and writing.
Prerequisite: LCH 102 or LCH 103 or consent of instructor.
Undergraduate Course Descriptions

LCH 202
Mandarin Chinese IV (3,0)
3 Credits
A continuation of LCH 201.
Prerequisite: LCH 201 or consent of instructor.

LCH 203
Mandarin Chinese III & IV (6,0)
6 Credits
A continuation of LCH 103 with emphasis on communicative abilities in listening, speaking, reading, and writing.
Prerequisite: LCH 102 or LCH 103 or consent of instructor.

LCH 205
Modern Chinese Films (3,0)
3 Credits
This course uses Chinese films for in-depth discussion and critical-thinking of issues concerning contemporary Chinese society in global transition. Students are required to discuss, analyze, and write short essays in Mandarin to bring out the films' cultural underpinnings.
Prerequisite: LCH 302 or LCH 303 or by course equivalency test.

LCH 206
Contemporary Chinese Literature (3,0)
3 Credits
This course selects contemporary Chinese short stories and poems in comparison with classical poetry and oral and performance literature. Class discussions and assignments may be combined with visits to the opera, dances, and theater. Students will gain a unique and in-depth understanding of Chinese culture at both the elite and popular levels. This course emphasizes reading, writing, and appreciation skills in Chinese.
Prerequisite: LCH 205 and LCH 208 or by course equivalency test.
Note: This course is taught in the Chinese Language, with testing, papers and examinations in Chinese. Textbooks will be in English with supplementary material or assignments in Chinese or English required.

LCH 207
Introduction to Geography (3,0)
3 Credits
A survey course designed to acquaint the student with types of maps, map reading and use, as well as to show relationships between geography and economics, culture, and geopolitics. Humans and their use of their environment are stressed, along with the usual emphasis on places, names, and locations. Ancillary topics will include climate, demography, and transportation.
Prerequisite: LCH 205 and LCH 208 or by course equivalency test.
Note: This course is taught in the Chinese Language, with testing, papers and examinations in Chinese. Textbooks will be in English with supplementary material or assignments in Chinese or English required.

LCH 208
Speech in Chinese (3,0)
3 Credits
A continuation of the study of communication and communication theory with emphasis on overcoming communication apprehension, developing listening skills, mastering oral performance, and writing about communication. Individual sections may focus on public speaking, group discussion, oral interpretation, or interpersonal communication. Section emphasis varies by instructor and is listed in the Schedule of Courses.
Prerequisite: COM 122 and either LCH 302 or LCH 303.
Note: This course is taught in the Chinese Language, with testing, papers and examinations in Chinese. Textbooks will be in English with supplementary material or assignments in Chinese or English required.

LCH 301
Intermediate Mandarin Chinese I (3,0)
3 Credits
This course empowers students with the performable ability for sustained appropriate discourse in sentence strings or paragraph chunks on a wide range of topics to be easily understood by native speakers of Mandarin. Topics may include but are not limited to biographical paragraphs, salaries and taxation, college curriculum for different degrees, international travel, government bureaus, and handy personal and emergency situations.
Prerequisite: LCH 202 or LCH 203 or by course equivalency test.

LCH 302
Intermediate Mandarin Chinese II (3,0)
3 Credits
Designed for students who are continuing to the second course in Intermediate Mandarin Chinese, this course provides a variety of real-life simulations such as but not limited to being a tour guide, a marriage
Undergraduate Course Descriptions

counselor, an insurance sales person, a security firm manager, an environment consultant, and a professional in other fields.

Prerequisite: LCH 301 or by course equivalency test.

LCH 303
Intermediate Mandarin Chinese I & II (6,0)

6 Credits

This course empowers students with the performable ability of sustained appropriate discourse in sentence strings or paragraph chunks in a wide variety of real-life simulations. Discourse should be easily understood by native speakers of Mandarin. Topics may include but are not limited to biographical paragraphs, salaries and taxation, college curriculum for different degrees, international travel, government bureaus, handy personal and emergency situations, being a tour guide, a marriage counselor, an insurance sales person, a security firm manager, an environmental consultant, and a professional in other fields.

Prerequisite: LCH 202 or LCH 203 or by course equivalency test.

LCH 306
Asian Literature (3,0)

3 Credits

A continuation of the study of communication and Asian literature in translation. Representative readings are chosen from ancient times to the present, from poetry to prose, from female writers to male writers, from South Asia to East Asia. Synthesis of major literary themes and development, as well as the cultural contexts for literature, is an important part of the course. The course uses both books and films as study material. A regional and/or thematic focus may be created depending on the instructor’s expertise. For example, an instructor may focus on East Asia rather than South Asia, on prose rather than drama.

Prerequisite: Sophomore standing, successful completion of GSIS/Chinese study abroad or consent of the instructor.

Note: This course is taught in the Chinese Language, with testing, papers and examinations in Chinese. Textbooks will be in English with supplementary material or assignments in Chinese or English required.

LCH 307
Personality and Profiling (3,0)

3 Credits

This course provides a rigorous and comprehensive foundation for explaining, understanding, predicting, and influencing people. This foundation will be applied to stopping people from violating trust, namely, committing espionage and to identifying and controlling them as quickly as possible after they have violated trust. The course will largely focus on personality theory and research based on scientific methodologies. The course also will explore other approaches to human knowledge and meaning, including the philosophy of epistemology, literary criticism, and the interpretation of cultural products such as film, music, dance, and painting. By course’s end, students will have profiled a U.S. citizen convicted of spying against his country.

Prerequisite: LCH 400 or by course equivalency test.

Note: This course is taught in the Chinese Language, with testing, papers and examinations in Chinese. Textbooks will be in English with supplementary material or assignments in Chinese or English required.

LCH 308
History of Terrorism (3,0)

3 Credits

This course will introduce the student to the history of terrorism, from the 19th century up to the present day. It will evaluate the causes of terrorism, the capabilities and limitations of terrorist groups, the requisites of effective counterterrorism responses, and the future prospects of terrorism. It will address the implications of terrorism and asymmetrical warfare for U.S. national security, including the possible use of weapons of mass destruction. The constitutional and legal implications of counterterrorist strategies will also be discussed. It will examine the organization, objectives, and methodologies of key terrorist groups operating in the 21st century, particularly those showing ideological hardening, religious revivalism, and ethnic militancy.

Prerequisite: SS 327 and LCH 306.

Note: This course is taught in the Chinese Language, with testing, papers and examinations in Chinese. Textbooks will be in English with supplementary material or assignments in Chinese or English required.

LCH 400
Eastern and Western Civilizations (3,0)

3 Credits

Cultural achievements of Eastern and Western civilization from ancient times to the present. Comparisons will be made among different civilizations of the world, and how these civilizations relate to each other. Course may include supplementary reading and writing assignments in English.

Prerequisite: LCH 308 or by course equivalency test.

__— 201 —__
Undergraduate Course Descriptions

LCH 402
Applied Cross-Cultural Communication (3,0)
3 Credits
An examination of the challenges to communicating across the variety of subcultures present in work environments. Ethnicity, nationality, gender, physical impairment, and sexuality are among the areas of difference often present in business and professional environments that may influence the establishment of cooperative working relationships. Means for analyzing and developing strategies to transcend and make positive use of subcultural differences will be considered.

Prerequisite: LCH 208 and either COM 221, COM 222 or COM 223.

LSP 101
Spanish I (3,0)
3 Credits
Basic grammar and reading. Introduction to conversation. Not open to students with two or more years of high school Spanish or the equivalent.

Note: Not open to native speakers.

LSP 102
Spanish II (3,0)
3 Credits
A continuation of LSP 101.

Prerequisite: LSP 101 or consent of the instructor

LSP 201
Spanish III (3,0)
3 Credits
A continuation of LSP 102.

Prerequisite: LSP 102 or consent of the instructor.

LSP 202
Spanish IV (3,0)
3 Credits
A continuation of LSP 201. Students will enhance their speaking skills, learn advanced forms of grammar, and begin reading and formal writing.

Prerequisite: LSP 201 or consent of the instructor.

LSP 399, 499
Special Topics in Spanish Language
1-6 Credits
Individual independent or directed studies of selected topics in the Spanish language.

Prerequisites: Consent of instructor and approval of the department chair.

Mathematics

MA 106
Basic Algebra and Trigonometry (3,0)
3 Credits
A study of the basic laws of fractions, exponents, radicals, inequalities, quadratic equations, complex numbers, and the elements of trigonometry. (This is a developmental course; credit is not applicable to any degree.)

MA 111
College Mathematics for Aviation I (3,0)
3 Credits
A pre-calculus course designed for the student of aviation. Review of the fundamentals of algebra; linear equations and inequalities; quadratic equations; variation; polynomial, rational, exponential, logarithmic, and trigonometric functions; radian measure; right triangle solutions, vectors, and the laws of sines and cosines.

Prerequisite: MA 106, or placement.

MA 112
College Mathematics for Aviation II (3,0)
3 Credits
Basic calculus designed for the student of aviation. Differentiation and integration of algebraic functions; applications to velocity, acceleration, area, curve sketching, and computation of extreme values.

Prerequisite: MA 111.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
</table>
| MA 120 | Quantitative Methods I (3,0) | 3 | An algebra methods course with applications to business and economics. Operations, relations, functions, modeling, and problem solving; systems of linear equations and inequalities.
Prerequisite: Placement. |
| MA 140 | College Algebra (3,0) | 3 | Fundamentals of exponents, radicals, linear, quadratic, and absolute value equations, inequalities, and complex numbers. Introduction to functions, curve sketching, elementary theory of equations, sequences and series, matrix algebra, and systems of equations.
Prerequisite: MA 106, or placement. |
| MA 142 | Trigonometry (3,0) | 3 | Trigonometric functions and their graphs; identities; radian measure with applications; compound, half, and double angle identities; solving elementary trigonometric equations, right and oblique triangles; law of sines and cosines; exponential, logarithmic, and inverse trigonometric functions; vectors and trigonometric form of a complex number.
Prerequisite: MA 140. |
| MA 145 | College Algebra and Trigonometry (5,0) | 5 | Fundamentals of exponents, radicals, linear and quadratic equations, inequalities, elementary theory of equations, sequences and series, functions, exponential, logarithmic, and trigonometric functions, radian measure, trigonometric identities and equations, vectors, laws of sines, cosines, solutions of right triangles, and complex numbers.
Prerequisite: MA 106, or placement. |
| MA 220 | Quantitative Methods II (3,0) | 3 | An introduction to the methods and concepts of calculus with applications to business and economics; marginal functions, graphing, extreme values, and area problems. A brief introduction to descriptive statistics.
Prerequisite: MA 111 or MA 120. |
| MA 222 | Business Statistics (3,0) | 3 | Measures of central tendency and dispersion; histograms; algebra of probability; sample spaces; dependent events; Bayes’ Theorem with applications; binomial, Poisson, normal distributions, and their interrelationships; sampling distributions; hypothesis testing; confidence intervals.
Prerequisite: MA 111 or MA 140. |
| MA 241 | Calculus and Analytical Geometry I (4,0) | 4 | Graphs and functions; limits and continuity; differentiation and integration of algebraic and elementary trigonometric functions; applications of first and second derivatives.
Prerequisite: MA 140 or MA 145 or equivalent.
Corequisite: MA 142. |
| MA 242 | Calculus and Analytical Geometry II (4,0) | 4 | Differentiation and integration of transcendental functions; elements of infinite series; special integration techniques; polar coordinates; applications of the definite integral; numerical methods.
Prerequisite: MA 241. |
| MA 243 | Calculus and Analytical Geometry III (4,0) | 4 | Solid analytic geometry; vector functions in three dimensions; line and surface integrals, partial differentiation; directional derivative and gradient; multiple integrals.
Prerequisite: MA 242. |
| MA 244 | Combined Calculus (5,0) | 5 | Covers all the topics currently in MA 241 and MA 242.
Prerequisite: One year of calculus. |
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Description</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA 320</td>
<td>Decision Mathematics (3,0)</td>
<td>3</td>
<td>The mathematical concepts and applications in mathematical model building and problem solving. Included are mathematical areas that are basic to decision theory.</td>
<td>MA 222. Not open to engineering students.</td>
</tr>
<tr>
<td>MA 341</td>
<td>Introduction to Mathematical Analysis (3,0)</td>
<td>3</td>
<td>Careful treatment of the theoretical aspects of the calculus of functions of a real variable. Topics include the real number system, limits, continuity, derivatives, the Riemann integral, elementary notions of topology and metric spaces.</td>
<td>MA 243.</td>
</tr>
<tr>
<td>MA 345</td>
<td>Differential Equations and Matrix Methods (4,0)</td>
<td>4</td>
<td>Treatment of ordinary differential equations to include principal types of first and second order equations; methods of substitution on simple higher order equations; linear equations and systems of linear equations with constant coefficients; methods of undetermined coefficients and variation of parameters; Laplace transforms; series solutions; linear algebra and matrix methods of solutions; applications to physics and engineering.</td>
<td>MA 243.</td>
</tr>
<tr>
<td>MA 404</td>
<td>Statistics and Research Methods (3,0)</td>
<td>3</td>
<td>Elements of probability theory including finite probability spaces, conditional probabilities, independence, correlation, Bayes’ Theorem, and Gaussian random variables. Statistical methods including contingency tables, regression, hypothesis testing. Experimental design. Ethical considerations in experimentation. Nonquantitative research methodologies. Numerical methods including the introduction of at least one computer-based statistics package.</td>
<td>MA 112 or MA 241.</td>
</tr>
<tr>
<td>MA 412</td>
<td>Probability and Statistics (3,0)</td>
<td>3</td>
<td>Finite sample spaces; conditional probability and Bayes’ Theorem, discrete and continuous random variables and their functions; expected value, variance, and standard deviation; systematic study of the major discrete and continuous distributions; moment generating functions; hypothesis testing and estimation.</td>
<td>MA 243.</td>
</tr>
<tr>
<td>MA 432</td>
<td>Linear Algebra (3,0)</td>
<td>3</td>
<td>Review of vector and matrix operations including matrix inverses, eigenvectors, and eigenvalues. Equations of lines and planes, vector spaces including basis and dimensions, linear transformations, change of basis, diagonalization of matrices, inner products and orthonormal bases, applications.</td>
<td>MA 243.</td>
</tr>
<tr>
<td>MA 438</td>
<td>Numerical Analysis I (3,0)</td>
<td>3</td>
<td>Floating point arithmetic, error analysis, algorithms in interpolation, integration, differentiation, matrix algebra, approximation and solution of equations, use of numerical software packages.</td>
<td>CS 210, MA 345.</td>
</tr>
<tr>
<td>MA 441</td>
<td>Mathematical Methods for Engineering and Physics I (3,0)</td>
<td>3</td>
<td>Line and surface integrals; vector fields with the study of Green, Gauss, and Stokes Theorems; applications of vector field theory; Fourier series.</td>
<td>MA 345.</td>
</tr>
<tr>
<td>MA 442</td>
<td>Mathematical Methods for Engineering and Physics II (3,0)</td>
<td>3</td>
<td>The solution of linear differential equations with variable coefficients; study of the derivation, characteristics, and solutions of partial differential equations; Fourier series, Fourier transform, Laplace transform, and Breen’s function; applications in science and engineering.</td>
<td>MA 441.</td>
</tr>
</tbody>
</table>
MA 443
Complex Variables (3,0)
3 Credits
Algebra of complex numbers; complex functions, analytic functions; mapping by elementary functions; conformal mappings and their applications; additional topics may include complex integration, and power series expansion.
Prerequisite: MA 441.

MA 299 - 499
Special Topics in Mathematics
1-6 Credits
Individual independent or directed studies of selected topics in mathematics.
Prerequisites: Consent of instructor and approval of the department chair.

Mechanical Engineering

A grade of C or better is required in MA 241, MA 242, and either PS 150 and PS 160 or PS 215, PS 216 and PS 208 for entry into all ME courses. A passing grade in all prerequisite courses or department consent is required for entry into all ME courses.

ME 302
Introduction to Robotics (3,0)
3 Credits
This course is an introduction to robotics with emphasis on the mathematical tools for kinematics and dynamics of robot arms. Topics include the geometry and mathematical representation of rigid body motion; forward and inverse kinematics of articulated mechanical arms; trajectory generation, splines, interpolation; manipulator dynamics; position sensing and actuation; and topics in manipulator control. Coursework includes weekly problem sets and computational laboratories (using the MATLAB numerical programming environment), a midterm examination, and a final examination.
Prerequisite: ES 204.

ME 302L
Introduction to Robotics Laboratory (0,3)
1 Credit
This laboratory course programs a manipulator arm to perform industrial robotic applications. Topics follow ME302 lectures on robot kinematics and dynamics. Advanced topics include visual feedback control such as using a Cognex machine vision system with the Denso robots.
Prerequisite: ES 204.
Corequisite: This course must be taken concurrently with ME 302.

ME 303
Vehicle Dynamics (3,0)
3 Credits
This course covers design considerations for high-performance vehicles such as competition automobiles and high-speed mass transit vehicles. Considered are propulsion, aerodynamics, stability, down force enhancement systems, braking and handling. Engines for various vehicles are compared, such as the conventional internal combustion engine, the rotary or Wankel, for competition applications and long-life requirements such as traction engines for rail applications. Also investigated are crash safety issues for both mass transit and competition. Guided vehicles such as mass transit trains and the Intelligent Transportation System (ITS) are investigated. Future technologies such as magnetically levitated and very high-speed mass transit systems are analyzed.
Prerequisites: ES 202, ES 204, and ES 305, or consent of the instructor.

ME 304
Introduction to Machine Design (3,0)
3 Credits
Detail design of machine components; application of analytical methods in the design of simple machines. Failure mode analysis, theories of failure, yield, fracture, deflection, and fatigue analysis of machine elements. Introduction to computer methods of stress and deflection analysis using finite element analysis.
Prerequisites: EGR 200, ES 202, and ES 204.

ME 305
Machine Design Laboratory (0,3)
1 Credit
A companion laboratory to ME 304.
Corequisite: ME 304.

ME 306
Robotic Mechanisms (3,0)
3 Credits
This course studies the application and design of robotic systems. Rover drives, suspension systems, tracked vehicles, gimbal-mounted cameras/sensors, and walking robots are covered with an emphasis on
space and aerial robotic applications. Several hands-on projects will be conducted and a final design project is required.

Prerequisite: ME 204.

ME 309

Airbreathing and Rocket Propulsion (3,0)

3 Credits

A study of airbreathing and rocket engines. Topics include control volume, conservation equations, and thermodynamic analyses as they apply to a propulsion system as well as components, such as inlets, compressors, burners, turbines, and nozzles. Airbreathing engine analysis will cover both on-design (Parametric Cycle Analysis) and off-design (Engine Performance Analysis) performance. Rocket analysis will address performance of both liquid and solid propellant motors.

Prerequisite: ES 305.

ME 400

Vibration & Acoustics (3,0)

3 Credits

Basic concepts of vibration; free and undamped vibration; energy methods and Rayleigh’s method for determination of natural frequencies; viscously damped vibration; various damping mechanisms; torsional vibration; harmonically excited vibration; transient vibration; multi degrees of freedom systems; rotor dynamics; basic principles of acoustics and wave propagation; electroacoustics; transducers, noise measurements; applications to land, airborne, and space vehicle acoustics generated by a structure’s vibration or by aerodynamic sources.

Prerequisites: MA 345, ES 202 and ES 204, or approval of the instructor.

ME 401

Advanced Fluid Dynamics (3,0)

3 Credits

Development of application of Navier-Stokes equations, estimation of drag and lift, isentropic flow, normal and oblique shock waves, Fanno and Rayleigh flow, turbomachinery, introduction to computational fluid dynamics, application of CFD software.

Prerequisite: ES 206.

ME 402

Robotic Arms (3,0)

3 Credits

This course is an introduction to robotics with an emphasis on kinematics and dynamics of robotic arms. The Space Shuttle arm and the Mars rover arms will be analyzed. Topics include forward and inverse kinematics, trajectory generation, interpolation, and position sensing. Students will complete a project where they program a robotic arm and/or robotic welder.

Prerequisite: ES 204.

Corequisites: EE 401, ME 306.

ME 403

Thermal Power Systems (3,0)

3 Credits

Availability and evaluation of thermodynamic properties. The thermodynamics of compressible flow. Thermodynamic power and refrigeration cycles and systems; psychrometrics and environmental control; mixtures of ideal gases; introduction to combustion; internal combustion engines, gas turbines, fuel cells; and direct energy conversion. Design and optimization of power systems and climate control with applications to land vehicles, robotics, aircraft, and spacecraft.

Prerequisites: ES 305, MA 345.

ME 404

Mechatronics (3,0)

3 Credits

This course includes the application of microprocessors to robotic systems with control. This course emphasizes the integration of aerospace, mechanical, electrical, and computer systems in robotics. Design and integration of microcontrollers, actuators, motors, power systems, and sensors are studied with significant group-oriented design experiments. High-level graphical programming is introduced. Simple autonomous algorithms such as line tracking, edge detection, and path planning are examined with and without feedback control.

Prerequisites: ES 204 and EE 335/336 or EE 223/224.

ME 404L

Mechatronics Laboratory (0,3)

1 Credit

This laboratory course implements real-time systems to control aerospace and robotic systems, with an emphasis on microcontrollers and embedded hardware with a Real Time Operating System (RTOS). Topics follow ME 404 lectures on actuators, motor controllers, sensors, filters and their implementation.

Prerequisites: ES 204 and EE 335/336 or EE 223/224.

Corequisites: This course must be taken concurrently with ME 404.
ME 405
Vehicle Power Systems (3,0)
3 Credits
Modern analytical approach to the design and performance analysis of advanced internal combustion engines. Study of thermodynamics, fluid flow, combustion, and heat transfer. Engines for various vehicles are compared (such as the conventional internal combustion engine, the rotary or Wankel), for competition applications and long-life requirements such as traction engines for rail applications. Fuels and combustion, exhaust flows, emission and air pollution, fuel cell systems, hybrid vehicles. Ideas from aerospace technologies are implemented, such as jet engines and gas turbines for powering vehicles, and mass transit. Also, future technologies such as magnetically levitated and very high-speed mass transit systems are analyzed. Application of course techniques to engine research projects.
Prerequisite: ES 305.

ME 406
Robotics II (3,0)
This course studies the applications and design of robotic systems. Particular emphasis is placed on aviation and space applications of robotics. Typical robotic motion is investigated as well as the requirements for control systems for the needed accuracy, repeatability, and stability. Sensors such as position, force, and acceleration are explored as well as the signal conditioning circuits and analog-to-digital conversion required for interfacing these sensors. Activating devices such as electric motors, linear actuators, and other motion devices are analyzed. Systems are modeled and control laws are developed. Software for computer-generated control laws are studied.
Prerequisite: ME 302, AE 430.
Corequisite: MA 412.

ME 406L
Robotics II Laboratory (0,3)
1 Credit
This laboratory course focuses on the real-time software and computer hardware control of robotic systems necessary for senior detailed design. Multi-degree of freedom robotic manipulators are constructed with a particular emphasis on harmonic drives, AC servo motors, and associated controllers.
Prerequisite: ME 302/302L, AE 430.

Corequisite: This course must be taken concurrently with ME 406.

ME 407
Preliminary Design of Robotic Systems with Laboratory (3,3)
4 Credits
Mechanical design principles are developed and applied for robotic applications. The topic is selected and approved by the Mechanical Engineering Department. Principles of conceptual and detailed mechanical design, and component design, manufacture, and production are covered. A complete system is designed, resulting in a complete set of specifications, supporting analysis, drawings, and performance report. For senior undergraduate students only.
Prerequisite: ME 304 and ME 302 or ME 306, Senior standing.

ME 409
Vehicle Aerodynamics (3,0)
3 Credits
Aerodynamic forces on land vehicles. Design requirements for lift, drag, stability, and safety for passengers. Cars, high-performance vehicles, commercial, and motorcycles. Noise control, heating, ventilation, and air conditioning. Engines for various vehicles are compared (such as the conventional internal combustion engine, the rotary or Wankel), for competition applications and long-life requirements such as traction engines for rail applications. Fuels and combustion, exhaust flows, emission and air pollution, fuel cell systems, hybrid vehicles. Ideas from aerospace technologies are implemented, such as jet engines for powering vehicles and the use of computational fluid dynamics codes to predict the aerodynamic performance of such vehicles. Also, future technologies such as magnetically levitated and very high-speed mass transit systems are analyzed.
Prerequisites: ES 201, ES 204, ES 206, ES 305.

ME 410
Advanced Machine Design (2,0)
2 Credits
Design and analysis of mechanics system, for fluctuating loading. Fatigue analysis. Application of design fundamentals to mechanical components, and integration of components to form systems. Fatigue failure of systems. Mechanical design of such systems as bearings, transmission gears, springs, joints, brakes, and clutches. Indeterminate systems.
Prerequisites: ES 320, ME 304.
ME 415
Modeling and Numerical Simulations of Energy and Environmental Systems (3,0)
3 Credits
The course introduces students to the basic methods of numerical modeling for typical physical problems encountered in solid mechanics, thermal/fluid sciences, energy, and environmental systems. Students will learn how to formulate a model in terms of an algebraic or differential equation. Problems that can be solved analytically will be chosen initially and solutions will be obtained by appropriate discrete methods. Basic concepts in numerical methods, such as convergence, stability, and accuracy, will be introduced. Various computational tools will then be applied to more complex problems, with emphasis on finite element and finite difference methods, finite volume techniques, boundary element methods, and gridless Lagrangian methods. Methods of modeling convective nonlinearities, such as upwind differencing and the Simpler method, will be introduced. Discussion and structural mechanics, internal/external fluid flows, and conduction and convection heat transfer. Steady state, transient, and eigenvalue problems will be addressed with emphasis on aerospace power and environmental systems.
Prerequisite: ME 309.

ME 416
Robotics III (2,0)
2 Credits
This course builds on the theory of mechanisms and kinematics associated with Robotics I and II and expands on those concepts to design and analyze mobile robots as they are being used to explore planets and other inaccessible areas. The focus will be on locomotion, sensors and perception, navigation and state estimation, and environment modeling. Safety and reliability and other aspects of mobile robot design such as energy supply will be studied. Finally the student will incorporate the learned material into the mobile robots available in the space systems laboratory.
Prerequisites: ME 306, AE 430.

ME 417
Advanced Propulsion (3,0)
3 Credits
Jet engines are analyzed in depth using the fundamental principles developed in ME 309 and by extensive computer programs. Parametric engine cycle analysis will investigate both ideal and engines with losses. The performance of a particular (actual) jet engine will be analyzed to determine how its performance is affected by operational conditions (altitude, throttle positions). In addition to the turbojet, turbofan, turboprop, and turboshaft family of jet engines, the scramjet will be analyzed.
Prerequisite: ME 409.

ME 420
Detail Design of Robotic Systems with Laboratory (3,3)
4 Credits
Principles of detailed robotic and mechanical design, analysis, modeling and testing are covered and incorporated into projects to give actual experience in the detail design and integration of robotic systems and subsystems. Integration of multiple mechanical, electrical and computer subsystems into a single functional model is a key component of the course.
Prerequisites: ME 404, ME 406, ME 407.

ME 421
Clean Energy Systems (3,0)
3 Credits
This course will emphasize energy systems for both stationary and transportation applications. General energy requirements will be discussed for industrialized societies and the effects of waste energy and undesired by-products. Clean energy process and minimizing the environmental effects. Examples of energy systems to be considered are fuel cells, wind energy, wave energy, geothermal energy, and solar energy.

ME 426
Propulsion III (2,0)
2 Credits
Engines to provide the propulsion for general aviation aircraft are analyzed. While the standard Otto Cycle engines using avgas have served general aviation well, the fuel crisis and the environmental issues at the 14,000+ suburban airports in the U.S. have resulted in numerous proposals for new engines. The course will study the various options: electrical, diesel, rotary, turboprop, turboshaft, as well as modifications to the conventional spark-ignition engine.
Prerequisites: ES 305, ME 309.
ME 429
Propulsion System Preliminary Design (3,3)
4 Credits
This course is concerned with the preliminary design of a propulsion system, components and/or group of components based on a set of vehicle or propulsion system-specific performance requirements. Students are challenged to perform the appropriate requirements analysis, select a propulsion system type and system-level design characteristics to best meet the requirements. The students will then complete a paper design of the propulsion system components, ensuring proper integration with the propulsion system and, if appropriate, the vehicle for which the system is designed.
Prerequisites: ME 417 or permission of the instructor.
Corequisite: EGR 200

ME 430L
Control Systems Laboratory (0,3)
1 Credit
A companion laboratory for AE 430 designed for the Mechanical Engineering student.
Corequisite: AE 430

ME 431
Propulsion System Detail Design (3,3)
4 Credits
This course is concerned with the design of a propulsion system component or group of components. Students are challenged to design the component(s) for the operating environment, and ensure that it will properly interface with the neighboring components. The component(s) will be manufactured on-site or by a machine shop according to student designs. Student will then test physical hardware and compare to analytical results. Emphasis is on hardware design, manufacturing and testing.
Prerequisites: ME 429 or permission of the instructor.
Corequisites: AE 416/417 and COM 430.

Military Science Army ROTC

MSL 101
Basic Military Science I (1,0)
1 Credit
A study of the defense establishment and the organization and development of the U.S. Army. A study of the roles the active Army forces, the Army Reserve forces, and the Army National Guard play in our nation’s defense. A study of the military customs, and traditions of the service. A historical perspective of the role of the different branches of the U.S. Army and the role they have played in the freedom of our nation. An introduction to physical readiness training. Course includes lectures and laboratory. Field training exercises normally include M16-A1 rifle firing, rappelling training, and airmobile helicopter operations.
Corequisite: MSL 101L.

MSL 101L
Basic Military Science I Laboratory (0,3)
0 Credit
Leadership laboratory with emphasis on military leadership and small unit tactics. Students develop leadership abilities through hands-on practical experiences. Training is introductory in scope and includes operations and tactics and land navigation subjects. Practical training exercises familiarize students with the field environment and field survival skills.

MSL 102
Basic Military Science II (1,0)
1 Credit
Continued emphasis on physical readiness training. Course includes lecture and laboratory. Field training exercises normally include M16-A1 rifle firing, rappelling training, and airmobile helicopter operations.
Corequisite: MSL 102L.

MSL 102L
Basic Military Science II Laboratory (0,3)
0 Credit
Leadership laboratory with emphasis on military leadership and small unit tactics. Students develop leadership abilities through hands-on practical experiences. Training continues the leader development process while remaining introductory in scope and develops basic operations and tactics and land navigation skills acquired in MSL 101L Laboratory. Practical training exercises continue cadet field orientation with the focus on individual training. Special topics, including stream-crossing techniques, field survival skills, and bivouac techniques are covered.

MSL 201
Basic Military Leadership I (2,0)
2 Credits
A review of the customs and traditions of the service. The fundamentals of leadership development and the importance of understanding the principles that are important to effective leadership. This includes focus
Undergraduate Course Descriptions

on goal setting, communication, problem solving, decision making, and group process.

Corequisite: MSL 201L.

MSL 201L

Basic Military Leadership I Laboratory (0,3)

0 Credit

Leadership laboratory with emphasis on military leadership and small unit tactics. Students develop leadership abilities through hands-on practical experiences. Training continues the development of cadet leadership and critical skills while remaining basic in scope and includes operations and tactics, land navigation, first aid, and general military subjects. Practical training exercises stress development of basic skills with the focus on soldier-team development at the squad/team level.

Corequisite: MSL 201L.

MSL 202

Basic Military Leadership II (2,0)

2 Credits

The fundamentals of military geography and their application in the use of navigational aids for the military forces. A study of preventive medicine countermeasures and first-aid techniques that every leader must know. The course requires mandatory physical training and includes both lecture and leadership laboratory. Two weekend training exercises normally include M16-A1 rifle firing, rappelling training, and air mobile helicopter operations.

Corequisite: MSL 202L.

MSL 202L

Basic Military Leadership II Laboratory (0,3)

0 Credit

Leadership laboratory with emphasis on military leadership and small unit tactics. Students develop leadership abilities through hands-on practical experiences. Training continues development of basic skills with the focus on soldier-team development at the squad/team level.

Corequisite: MSL 202L.

MSL 301

Officership I (3,0)

3 Credits

This course examines the foundations of officership and the character, responsibilities, and status of being a commissioned officer. It is dynamic, challenging, and stressful, for it is the course that emphasizes the warrior ethic. The course covers a wide spectrum of subjects, from training in common military skills to fostering a value system that emphasizes service to the nation, readiness to persevere in the face of obstacles, and willingness to make personal sacrifices in pursuit of the greater good. This course includes lecture, advanced leadership laboratory, physical training, and practical field training exercises.

Prerequisites: Completed basic military science (or given constructive credit) and be a contracted Army ROTC cadet.

Corequisite: MSL 301L.

MSL 301L

Officership I Laboratory (0,3)

0 Credit

Leadership laboratory with emphasis on military leadership and small unit tactics. Students develop leadership abilities through hands-on practical experiences. Training continues development of cadet competencies and confidence through intermediate leadership and technical/tactical instruction. Practical training exercises are supplementary in scope and include operations and tactics, land navigation, and weapons training. Special topics including tactical bivouac techniques, individual tactical techniques, tactical foot march techniques, squad tactics, and small unit patrolling are covered.

MSL 302

Officership II (3,0)

3 Credits

A continuing development of the processes that distinguish commissioned military service from other professional endeavors. The main emphasis of this class will be the preparation of cadets for the six-week advanced camp they normally attend at the end of the junior year. Here their capability to conceptualize, innovate, synthesize information, and make sound decisions while under stress will be evaluated. This course includes lecture, advanced leadership laboratory, enhanced physical training, and practical field training exercises.

Corequisite: MSL 302L.

MSL 302L

Officership II Laboratory (0,3)

0 Credit

Leadership laboratory with emphasis on military leadership and small unit tactics. Students develop leadership abilities through hands-on practical experiences. Training continues development of intermediate leader and critical skills in preparation for
Advanced Camp. Practical training exercises focus on soldier-team development at squad/patrol level. Training is supplementary and includes tactics, land navigation, and weapons subjects. Special topics include tactical bivouac techniques, small unit patrolling, a mini-STRAC exercise, and drownproofing.

MSL 401

Advanced Military Leadership I (3.0)

3 Credits

A study of military professionalism with emphasis on command and staff relationships, organizational functions, and duties of various staff officers who assist in the leadership of the organization. A study of personnel and logistical systems and the role they play in helping the organization optimize operations and improve life in the Army community. Training in staff briefings will be used as an introduction to military procedures. This course includes lecture, laboratory, and physical readiness training.

Corequisite: MSL 401L.

MSL 401L

Advanced Military Leadership I Laboratory (0,3)

0 Credit

Leadership laboratory with emphasis on military leadership and small unit tactics. Students develop leadership abilities through hands-on practical experiences. Training culminates the leader development process at the pre-commissioning level. Training is supplementary and includes operations and tactics, land navigation, and radio wire communication subjects. Students perform as subject matter experts and are responsible for conducting and evaluating training.

MSL 402

Advanced Military Leadership II (3.0)

3 Credits

A study of ethics and professionalism in the military and the role they play in carrying out the defense policy of the U.S. The fundamentals of military law, its impact on the American military society, and its place in the jurisdictional system. A history of the military courts martial as it relates to the jurisdictional process of American society. A study of the Law of Land Warfare and its relationship to the conduct of soldiers in combat. This course includes lecture, laboratory, and physical readiness training.

Corequisite: MSL 402L.

MSL 402L

Advanced Military Leadership II Laboratory (0,3)

0 Credit

Leadership laboratory with emphasis on military leadership and small unit tactics. Students develop leadership abilities through hands-on practical experiences. Training culminates development of leader skills emphasizing the transition from cadet to second lieutenant. Expands the frame of reference and gradually shifts it to orient on future assignments as an officer. Training is supplementary and includes operations and tactics, land navigation, and radio wire communication subjects. Students perform as subject matter experts and are responsible for conducting and evaluating training.

MSL 199-499

Special Topics in Military Science (3.0)

1-3 Credits

Individual independent or directed studies of selected topics in general military science.

Prerequisites: Consent of instructor and approval of professor of military science.

Physical Science

PS 101

Basic Chemistry (3,1.5)

3 Credits

Elementary chemical theory. Covers basic atomic theory, elements, compounds, and mixtures, calculation of weight and weight volume relationships, and basic descriptive chemistry. One 1.5-hour laboratory session per week. (Cannot be used for credit in chemistry toward a degree in Aerospace Engineering.) Passing grade required for Lab. Students who take PS 108 may not also take PS 101.

Prerequisite: MA 111 or corequisite: MA 140.

PS 102

Explorations in Physics (3.0)

3 Credits

Survey course in elementary physics. Stress will be placed on basic concepts, principles, and history of the development of physics. Presentations will include selected topics in mechanics, heat, light, sound, electricity and magnetism, and modern physics. (Cannot be used for credit in physics toward degrees
in Computer Science, Engineering Physics, Civil, Aerospace, or Electrical Engineering, or Aeronautical Science.)

Prerequisite: MA 111.

PS 105

General Chemistry I (3,3)

4 Credits

Fundamental principles of chemistry that include nomenclature, stoichiometry, atomic structure, periodic relationships, chemical bonding, geometry of molecules, properties of gases, solutions, and an introduction to organic chemistry. Laboratory includes both descriptive and quantitative work.

Prerequisites: High school chemistry or PS 101 and MA 140 or MA 111 or MA 120 or their equivalents.

PS 106

General Chemistry II (3,3)

4 Credits

Chemical principles that include thermodynamics, acids and bases, rates of reaction, electrochemistry, organic chemistry, synthetic materials.

Prerequisite: PS 105.

PS 107

Elements of Biological Science (3,0)

3 Credits

An introductory science course in general biology. Emphasis is placed on human anatomy and on the chemical and biological foundations of human physiology. Provides background material that supports life science applications courses.

PS 108

Contemporary Chemistry (3,1)

3 Credits

Elementary chemical theory. The origins and development of chemistry with an overview of the present applications of chemistry and its future potential in human affairs. Applications to scientific decision-making in the business and industrial environment. One one-hour laboratory session per week. Students who take PS 108 may not also take PS 101.

PS 113

Introductory Physics I (3,0)

3 Credits

Survey course in elementary physics. Stress will be placed on basic physics principles. Problem solving and problem solving logic will be an important, integral part of this course. Topics will include Newton’s Laws, projectile motion, circular motion, work, energy, conservation laws, and momentum.

(Cannot be used for credit in physics toward degrees in Aerospace Engineering, Electrical Engineering, or Aircraft Engineering Technology.)

Prerequisites: MA 111 or MA 120 or MA 140

Corequisite: MA 112 or MA 220 or MA 241.

PS 114

Introductory Physics II (3,2.5)

4 Credits

Application of basic physics principles discussed in PS 113. Other areas will include fluids, properties of matter, thermodynamics, wave motion, sound, simple harmonic motion, kinetic theory, basic electromagnetic theory, and elementary circuits. Laboratory includes both descriptive and quantitative work.

(Cannot be used for credit in physics toward degree in Aerospace Engineering, Electrical Engineering, or Aircraft Engineering Technology.)

Prerequisites: PS 113, MA 112 or MA 220 or MA 241.

Corequisite: PS 114L.

PS 140

Chemistry for Engineers (4,0)

4 Credits

Chemical stoichiometry, states of matter, solutions, thermodynamics, rate of reaction, equilibrium, oxidation-reduction, corrosion, organic compounds, and polymers.

Prerequisite: High school chemistry or PS 101.

Corequisite: PS 141.

PS 141

Chemistry for Engineers Laboratory (0,3)

1 Credit

One three-hour laboratory session per week, with experiments paralleling the material of PS 140.

Corequisite: PS 140.

PS 150

Physics for Engineers I (3,0)

3 Credits

Vectors and scalar quantities, geometrical optics, kinematics, Newton’s Laws of Motion, work, work-energy, conservation of energy, conservation of momentum, center of mass and its motion.

Corequisite: MA 241.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
</table>
| PS 160 | Physics for Engineers II (3,0) | 3 | Special theory of relativity, rotational motion, simple harmonic motion, waves, fluids, heat, kinetic theory, thermodynamics.
Prerequisite: PS 150.
Corequisite: MA 242. |
| PS 204 | General Astronomy (3,0) | 3 | An introductory course in astronomy, primarily intended for Space Physics majors. Topics include the history of astronomy, celestial mechanics, light and spectra, telescopes, the solar system, and exoplanets. Includes night observing sessions.
Prerequisite: PS 150 or PS 215. |
| PS 208 | Physics II (3,0) | 3 | Fluids, temperature, heat, first and second laws of thermodynamics, wave motion, acoustics.
Prerequisites: MA 241, PS 215.
Corequisite: MA 242. |
| PS 215 | Physics I (3,0) | 3 | Estimations, order of magnitude analysis, Newton’s Law, gravitation, kinematics, work and energy, momentum, rotation, harmonic motion.
Corequisite: MA 241. |
| PS 216 | Physics I Laboratory (0,3) | 1 | One three-hour laboratory session per week, with experiments chosen primarily from mechanics.
Corequisite: PS 215. |
| PS 219 | Physics III (3,0) | 3 | Static electricity, Gauss’s Law, potential, Ohm’s Law, direct current circuits, magnetic fields, induced electromotive force, inductance, EM waves, the nature of light, images formed by mirrors and lenses and optical instruments.
Prerequisites: PS 208, PS 221, MA 242.
Corequisite: MA 243. |
| PS 221 | Intermediate Physics Laboratory (0,6) | 2 | Two three-hour laboratory sessions per week with experiments chosen primarily from wave motion, thermodynamics, electricity, magnetism, and geometric optics.
Prerequisites: PS 215, PS 216.
Corequisites: MA 242, PS 208. |
| PS 232 | Computational Methods in the Physical Sciences (3,0) | 3 | This course is designed to teach students the computational methods used in physics and the physical sciences. Students will learn the techniques required to solve complex problems in physics and display their graphical representations using both structured and symbolic math programming languages. Students will also learn data reduction and error analysis techniques, fitting linear and non-linear functions, minimizing chi-square, and interpreting error matrices.
Prerequisites: MA 241, PS 215.
Corequisites: MA 242, PS 208. |
| PS 250 | Physics III for Engineers (3,0) | 3 | Gravitational fields, electric fields, and magnetic fields, Gauss’s law, electric potential, linear accelerators, cyclotrons, capacitors, Ohm’s law, Kirchoff’s laws, Ampere’s law, Faraday’s law, Lenz’s law, Maxwell equations, selected topics from modern physics.
Prerequisites: MA 242, PS 160. |
| PS 253 | Physics Laboratory for Engineers (0,3) | 1 | One three-hour session per week. Experiments will vary from semester to semester, but will be chosen from laboratory report writing workshop, error analysis, damped harmonic oscillations, spectrometers, optics, fiber optics, atomic physics, thermodynamics, and R-C circuit theory.
Corequisite: PS 250. |
Evolution of Scientific Thought (3,0)

3 Credits

Traces the development of science from the earliest times through the modern period, with particular emphasis given to our changing concepts of nature and of science itself. (Also offered as SS 302. Students receive either Social Sciences elective credit or Physical Sciences elective credit, but not both.)

Prerequisites: Either HU 140 or HU 141 or HU 142 and either PS 101 or PS 102 or PS 103 or PS 150 or PS 215.

Modern Physics (3,0)

3 Credits

Modern concepts in physics including optics. Topics include refraction, diffraction, and scattering of electromagnetic radiation, special relativity, wave-particle duality, the uncertainty principle, quantum theory of atomic structure, X-rays, lasers, and nuclear reactions.

Prerequisites: PS 219 and PS 221.

Environmental Chemistry (3,3)

4 Credits

This course is an introduction to the chemistry of natural systems, including cycling of elements, complex equilibria, oxidation and reduction, atmospheric chemistry, nuclear processes, energy use, and toxic substances. Laboratory work includes wet and instrumental analyses related to environmental analytical chemistry.

Prerequisite: PS 106.

Classical Mechanics II (3,0)

Advanced mechanics; celestial/orbital mechanics; dynamics of rigid bodies and systems of particles; non-inertial motion and gyroscopic motion; coupled oscillations; dynamics of continuous media and wave phenomena. Special theory of relativity. Students will write some simple computer programs.

Prerequisites: PS 303, PS 321.

Electricity and Magnetism I (3,0)

3 Credits

Solutions of electrostatics problems using Poisson’s equation and Laplace’s equation, electrostatic energy, electric current, magnetic field, electromagnetic induction, physics of plasmas, Maxwell’s equations, and application of Maxwell’s equations (reflection, refraction, waveguides, antenna radiation). Students will write some simple computer programs.

Prerequisite: PS 303.

Corequisite: MA 441.

Electricity and Magnetism II (3,0)

An advanced undergraduate course in electromagnetism emphasizing electromagnetic radiation and culminating with the relativistic formulation of electrodynamics. Topics covered include electromagnetic waves, waveguides, scalar and vector potentials, retarded potentials, the fields of a moving charge, dipole radiation, radiation reaction, and relativistic electrodynamics.

Prerequisites: PS 330, MA 432, MA 441.

Corequisite: MA 442.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Description</th>
<th>Prerequisites/Co-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS 350</td>
<td>Quantum Mechanics I (3,0)</td>
<td>3</td>
<td>The Schrödinger equation in one and three dimensions and its solutions for step potentials, the harmonic oscillator, and the hydrogen atom. Operators and their matrix representations: Dirac bracket formalism, angular momentum and spin, spin-orbit interaction. Identical particles and exchange symmetries. Time-independent and time-dependent perturbation theory and approximation methods: transition rates, Fermi’s rule, scattering theory. Classical and quantum statistical distributions.</td>
<td>PS 321 and PS 330 or instructor consent.</td>
</tr>
<tr>
<td>PS 375</td>
<td>Planetary Science (3,0)</td>
<td>3</td>
<td>Study of the planetary system: origin, evolution, composition, present configuration, dynamics, interiors, surfaces, atmospheres, and magnetospheres of the planets and, where appropriate, similar aspects of the satellites, asteroids, and comets. Interpretations of existing data and definition of future experiments to aid in determination of the origin and evolution of the solar system are stressed.</td>
<td>PS 303, PS 330.</td>
</tr>
<tr>
<td>PS 380</td>
<td>Optics Laboratory (1,3)</td>
<td>3</td>
<td>Study of geometrical and physical optics including plane waves, mirrors, lenses, emission and absorption line spectroscopy, diffraction gratings, lasers, and interferometers.</td>
<td>PS 330, PS 315.</td>
</tr>
<tr>
<td>PS 405</td>
<td>Atomic and Nuclear Physics (3,0)</td>
<td>3</td>
<td>Quantum mechanics concepts; mathematical methods in quantum mechanics; the hydrogen atom; two particle systems; charge and mass distribution of the atomic nucleus; nuclear fission; nuclear structure; nuclear potentials; nuclear fusion.</td>
<td>PS 350.</td>
</tr>
<tr>
<td>PS 408</td>
<td>Astrophysics II (3,0)</td>
<td>3</td>
<td>Radiative transfer in astrophysical environments; stellar atmospheres, stellar interiors, and gaseous nebulae. Emission and absorption processes. Interaction of radiation with matter.</td>
<td>PS 340.</td>
</tr>
<tr>
<td>PS 412</td>
<td>Particle Physics and Cosmology I (3,0)</td>
<td>3</td>
<td>Study of modern particle physics and the foundations of general relativity including special relativity and Minkowski spacetime, particle collisions and conservation laws, the Standard Model of particle physics, and introduction to classical and quantum scattering theory.</td>
<td>PS 350, MA 442.</td>
</tr>
<tr>
<td>PS 413</td>
<td>Particle Physics and Cosmology II (3,0)</td>
<td>3</td>
<td>Study of the theory of general relativity and modern cosmology including the Einstein field equations and special solutions, Big Bang cosmology, dark matter, dark energy, and inflation.</td>
<td>PS 412.</td>
</tr>
<tr>
<td>PS 420</td>
<td>Remote Sensing (3,0)</td>
<td>3</td>
<td>This course investigates the current technologies used in remote sensing. It emphasizes the scientific principles used in look-down satellite technologies, the same principles used in deep-space probes and non-invasive medical imaging. This course uses a physics-based approach to designing and developing remote sensing methodologies using the visible, infrared, and microwave spectrum. Students will learn to characterize target phenomenology from sensor system specifications to data modeling, collection, and analysis.</td>
<td>MA 441.</td>
</tr>
<tr>
<td>PS 422</td>
<td>Space Propulsion (3,0)</td>
<td>3</td>
<td>The course provides the student with an introduction to the basic principles of liquid and solid propul-</td>
<td>PS 405.</td>
</tr>
</tbody>
</table>
sion systems. Flight performance parameters are presented for single and multistage vehicles. The thermo-chemistry of the combustion process will also be discussed. Performance enhancements of nuclear rockets and electric propulsion will be covered.

Prerequisites: PS 105 and PS 405.

PS 430

Thermodynamics and Statistical Mechanics (3,0)

3 Credits

Prerequisite: PS 303.

PS 451

Quantum Mechanics II (3,0)

3 Credits

Multiparticle wave functions, second quantization, creation and annihilation operators, commutation relations, representations of one and two-body operators, simple applications, Wick’s Theorem, and Hartree-Fock theory.

Prerequisite: PS 350.

PS 490

Senior Research Thesis, Part I (2,3)

3 Credits

First semester optional capstone course for senior Space Physics students. Students will begin their senior research project in an area of interest that overlaps the interest of the supervising faculty.

Prerequisites: PS 350, MA 442, AND a cumulative ERAU GPA of 3.5 or greater OR a grade of B or better in each of the following: PS 321, PS 330, PS 340, PS 350, and PS 380.

PS 491

Senior Research Thesis, Part II (1,6)

3 Credits

Second semester optional capstone course for senior Space Physics students. Students will complete their senior research project culminating in a research paper that follows an accepted scientific publishing format.

Prerequisite: PS 490.

PS 199 - 499

Special Topics in Physical Science

1-4 Credits

Individual independent or directed study of topics in the fields of the physical sciences impinging on aerospace development or practices that are of current or anticipated interest.

Prerequisites: Consent of instructor and approval of the department chair.

Psychology

PSY 101

Introduction to Psychology (3,0)

3 Credits

A survey of the biopsychosocial continuum and the intrapsychic, interpersonal, and organizational factors affecting human behavior. A primary feature of the course is its focus on the scientific method as the route to psychological knowledge. Students study the rationalist, empiricist, and experimental foundations of the scientific method and how these foundations can be critiqued. Topics include sensation, perception, learning, memory, personality, psychopathology, physiological psychology, and social processes. Emphasis is placed on the application of the basic principles of psychology to engineering, aviation, public policy, and business.

PSY 350

Social Psychology (3,0)

3 Credits

This course examines the interactional forces between groups and the individual in society. Since the major focus of the course is on social interactions, such diverse topics as group dynamics, interpersonal relationships, prejudice, discrimination, and antisocial behavior will be considered. Special attention is given to the topic of stress in the aviation environment.

Prerequisite: PSY 101.

PSY 365

Abnormal Psychology (3,0)

3 Credits

This course is intended to familiarize students with theory and research on biological, cognitive-behavioral, and social-family perspectives and interventions of psychological disorders as problems that affect nearly everyone. Its emphasis on the research process, family issues and the line between normal
and abnormal behavior is intended to encourage students to think critically about social and personal issues and to understand the strategies, methodologies and applicability of research in abnormal psychology.

Prerequisite: PSY 101.

Regional Studies

Note: Regional Studies (RS) courses are also considered Humanities (HU) courses and can be taken as Humanities electives.

RS 200

Modern Asia (3,0)
3 Credits
A survey course of the major political, economic, cultural, and historical changes in Asia since the 19th century. A regional and/or thematic focus may be created depending on the instructor’s expertise. For example, an instructor may focus on East Asia rather than South Asia, on history rather than economy.
Prerequisites: HUI 14X and sophomore standing or consent of instructor.

RS 300

Observing Asian Cultures (3,0)
3 Credits
An interdisciplinary course that takes an anthropological, philosophical, and geographical approach to traveling in Asia. Topics include geographical changes in Asia, philosophical issues of travel, and the theory and methodology of studying other cultures and societies. The course culminates in an optional yet strongly recommended field trip to an Asian country.
Prerequisite: Sophomore standing or consent of the instructor.
Note: This course is only offered once every other year.

RS 305

Asian Literature (3,0)
3 Credits
Asian literature in translation. Representative readings are chosen from ancient times to the present, from poetry to prose, from female writers to male writers, from South Asia to East Asia. Synthesis of major literary themes and development, as well as the cultural contexts for literature, is an important part of the course. The course uses both books and films as study material. A regional and/or thematic focus may be created depending on the instructor’s expertise. For example, an instructor may focus on East Asia rather than South Asia, on prose rather than drama.
Prerequisite: Sophomore standing or consent of the instructor.

RS 306

Studies in Middle Eastern History and Culture (3,0)
3 Credits
This is an introductory survey to the history of the Middle East, politics, and diplomacy of the Israeli-Palestinian conflict. The students will be introduced to the challenges of politics in the Middle East and will develop their appreciation and better understanding of the historical events that led to establishment of the State of Israel, the Palestinian Authority, several wars, population displacement, terrorism, outstanding questions in the peace process, links between the Arab-Israel dispute and the Gulf/Islamic world. The course will also cover the expanding role of religion in the Middle East.
Prerequisite: Sophomore status or consent of the instructor.

RS 307

Islam and Arabic Culture (3,0)
3 Credits
An interdisciplinary course that explores the basics of Islam and aspects of Arabic culture. The Arab-Islamic culture has two main sources for legislation: the Holy Qur’an and the Sunna of the Prophet. There are other moral and social teachings from Pre-Islamic Arabia that have lasted and are part of the Arabic culture today such as the Bedouin code of ethics; however, the Holy Qur’an is the principal source of the Arab-Islamic culture and constitutes the framework that charts Arabic character and aspirations.
Prerequisite: Sophomore status or consent of the instructor.

RS 299 - 499

Special Topics in Regional Studies
1-6 Credits
Individual independent or directed studies of selected topics in Regional Studies.
Prerequisite: Consent of instructor and approval of department chair.
Software Engineering

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
<th>Description</th>
<th>Prerequisites</th>
</tr>
</thead>
</table>
| SE 300 | Software Engineering Practices (3,0) | 3 | This variable credit course introduces students to the fundamental principles and methodologies of large-scale software development. Students learn about the theory and practice of software engineering and work as part of a team on a full life-cycle software project that includes planning, software specification, software design, coding, inspections, and testing.

Prerequisite: CS 125. |

| SE 310 | Analysis and Design of Software Systems (3,0) | 3 | This course focuses on the fundamental methods employed in the analysis and design of software systems. Analysis is the process of determining a complete and consistent set of system requirements. Design is the process of producing a system architecture, both logical and physical, and determining an appropriate way to construct the software. The result of these processes is a documented model of the desired system. The student will learn and practice methods appropriate for both object-oriented and procedural systems.

Prerequisites: CS 315, SE 300. |

| SE 450 | Software Team Project I (2,3) | 3 | This is the first course in the sequence of a two-course senior project (SE 450 and SE 451). The senior project sequence of courses is the continuation of SE 300. They provide for additional student activities with the management, analysis, design, implementation, and testing of a software system. Students work in teams and use a defined software process to develop or modify a software product. Project work is assessed using industrial software standards and review techniques. The senior project sequence is considered the capstone course for undergraduate students in software engineering. The first course in this sequence (SE 450) emphasizes the early stages of the software development life cycle (requirements, analysis, and design). The artifacts developed during this course will be used as the foundation for further development during the second course in the sequence (SE 451).

Prerequisites: Senior standing, SE 310, SE 320. |

Safety Science

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
<th>Description</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>SF 201</td>
<td>Introduction to Health, Occupational and Transportation Safety (3,0)</td>
<td>3</td>
<td>This course introduces the student to the field of safety and covers basic health, safety and regulatory issues that apply to aviation and non-aviation business in the United States. Included is a comprehensive health and safety overview of legislative development and enactment of appropriate statutes, regulations and laws. This course also provides an introduction to hazard recognition, reporting, analysis and control used in risk management and accident prevention. Additional topics include accident investigation, safety data statistics, ergonomics, security and emergency preparedness, safety culture, aircraft systems, air traffic control and workers’ compensation. This course reviews theories, applications and practices of the field of safety.</td>
<td></td>
</tr>
<tr>
<td>SF 210</td>
<td>Introduction to Aerospace Safety (3,0)</td>
<td>3</td>
<td>This course provides an introduction and overview of the theories, concepts, applications, and practices of the field of aerospace safety. This course is designed for the beginning aviation safety student and covers topics such as human factors, mechanical factors, accident investigation, safety programs, and safety statistics.</td>
<td></td>
</tr>
<tr>
<td>SF 315</td>
<td>Environmental Compliance and Safety</td>
<td>3</td>
<td>This course examines matters associated with health and safety relating to the environment including air and water quality and sanitation. The course concentrates on hazardous materials, their storage, handling, and transportation by air, rail, marine, and highway. Additional study includes waste management and cleanup as well as a detailed study of safety and environmental issues.</td>
<td></td>
</tr>
</tbody>
</table>
environmental laws, regulations, and the protection of workers involved in activities associated with hazardous materials.

SF 320

Human Factors in Aviation Safety (3,0)

3 Credits

An examination of the major human causative agent in aircraft accidents: the human being. Emphasis is placed on the psychology and physiologic factors that enhance accident probability. Included is a detailed analysis of ergonomics (human engineering) and its influence.

SF 326

System Safety (3,0)

3 Credits

This course will emphasize the specialized integration of safety skills and resources into all phases of a system’s life cycle. Topics will include qualitative and quantitative tools and techniques for system analysis and design applied to accident analysis, prevention, and mitigation.

Prerequisites: SF 210, MA 222.

SF 330

Aircraft Accident Investigation (3,0)

3 Credits

A detailed evaluation of the methods and procedures involved in aircraft accident investigation. The organization, duties, and procedures of the Aircraft Accident Board are analyzed. The student explores procedures for determining accident causes through analysis for such elements as the function and techniques employed by the trained accident investigator and the role of the specialized laboratory. Analyses are also made of reporting procedures and the all-important follow-up work designed to avoid similar or related aircraft accidents.

Prerequisite: SF 201 or SF 210 or approval.

SF 335

Mechanical and Structural Factors in Aviation Safety (3,0)

3 Credits

This course examines the influence that design, manufacturing, metallurgy, and maintenance have on aircraft accidents. A detailed analysis of the failure process will be conducted. Additional topics include stress and design loading, fatigue, corrosion, and the envelope of operation.

Prerequisite: SF 330.

SF 341

Safety and Security of Airport Ground Operations (3,0)

3 credits

This innovative course discusses general aviation airport ground operations, particularly from the pilot and ramp worker perspectives. Focus will be on increasing awareness of airport operations and improving airport safety by creating an enhanced awareness of rules, policies, procedures, and potential hazards that affect the safety and security of aircraft, crew, passengers, and others within the airport ground operations environment. Specific topics include aircraft marshaling procedures, airfield security issues, ground vehicle operations, and accident/incident response and reporting.

SF 345

Safety Program Management (3,0)

3 Credits

A study of the principles of the development and management of an effective safety program. The philosophy and historical development of major concepts are examined with particular emphasis on areas of special concern in organizational accident prevention. Students analyze the influence of morale, education, and training, the role of the supervisor, and other substantial program elements of value to the safety manager.

Prerequisite: SF 201 or SF 210 or approval.

SF 350

Aircraft Crash and Emergency Management (3,0)

3 Credits

Theories, practices, and techniques used in the response phase of aircraft crashes and emergencies are explored. Designed as a real-world introduction to the field of emergency response at the Code of Federal Regulation (CFR) agency level, the airport response and administration levels, and related and associated entities involved in aircraft mishaps.

SF 375

Propulsion Plant Investigation (3,0)

3 Credits

A technical course in aircraft reciprocating and turbine engine fundamentals and relevant accident investigative procedures. Areas of study include basic construction and design with emphasis on major sections, components, and their mechanical relationships. Power plant systems and system mishap investigation is also covered and includes fuel, lubrication, ignition, and start systems. A study of
propeller basics and investigative techniques is also included. On-site field investigation as well as engine tear down/disassembly procedures are presented.

Prerequisite: SF 330.

SF 435

Aircraft Crash Survival Analysis and Design (3,0)

3 Credits

An in-depth analysis of the accident environment with particular emphasis on the protection of the occupants. The injury mechanisms and causes will be analyzed, as will the physics and kinematics of the impact sequence. The intent of the course is to familiarize the student with what can be done to minimize the effects of an accident.

Prerequisite: SF 335 or approval.

SF 445

System Safety in Aviation (3,0)

3 Credits

This course entails specialized integration of skills and resources in all phases of the life cycle of a given system in furtherance of accident prevention. Its heritage is systems engineering and management theory but it is amplified to include modern safety practices derived from numerous disciplines. Accordingly, this course reviews the development and implementation of system safety technology in aviation, both civil and military. Students will acquire an understanding of how accident prevention is designed into an aircraft under development, evaluated and enhanced during flight test, and ensured or otherwise controlled during operational use. This learning is juxtaposed with other elements of the total aviation system.

SF 462

Health, Safety and Aviation Law (3,0)

3 Credits

This course introduces the student to the legal issues and concerns confronting the health and safety industry. Included is an overview of the historical legal precedence established for the aviation industry, as well as comprehensive examination of laws, regulations and legislation that govern the actions and authority of the health and safety professional. This course also provides an introduction to the governing bodies and associations that are tasked with setting the legal standards by which the industry must operate, including the scope and level of their authority.

SF 299 - 499

Special Topics in Aviation Safety

1-3 Credits

Individual independent or directed studies of selected topics in aviation or non-aviation safety topics.

Prerequisites: Approval of program chair and department chair, consent of instructor, and 12 hours of SF courses.

Global Security and Intelligence Studies

SIS 100

Introduction to Global Security and Intelligence Studies (3,0)

3 Credits

SIS 100 is the introductory course for the Global Security and Intelligence Studies program. It discusses the whole range of contemporary international issues, from questions of realism versus idealism in foreign affairs, to changes in the nation-state, the implications of climate change, the proliferation of weapons of mass destruction, international development, the rise of China, and international public health. The course requires the student to closely follow breaking international developments and learn to discuss these objectively and analytically. An important emphasis throughout the course is for the student to learn and demonstrate critical thinking and imagination.

SIS 200

Introduction to the U.S. Legal System (3,0)

3 Credits

This course will provide a general overview of the legal system in the U.S. It is a core course for the GSIS program, designed to give the student a foundation in legal theory and philosophy, the sources of law, the place of the judicial system in the U.S., the structure of the courts, original through appellate jurisdiction, judicial review, the role of the legal profession, the structure of civil and criminal cases, the adversarial process, constitutional law and protections, and the application of law to security and intelligence issues.

Prerequisite: College-level history or permission of the instructor.
SIS 260
Forensic Science Applications in Security and Intelligence (3,1)
4 Credits
During this course students will learn the basic scientific principles and concepts underlying the use of forensic science in law enforcement, security, and intelligence. Students will become familiar with the various forensic techniques and their application in real-life situations. They will accomplish these learning objectives through a combination of academic work, practical field applications, and laboratory studies. The course material will focus on the available scientific equipment and tests employed in forensic science and their practical applications in criminal justice, civil proceedings, identification and intelligence analysis and confirmation. The students will learn the methodology employed in preserving a crime scene, collecting physical evidence, transporting and storing such evidence. The students will also review the various biological and chemical tests that could be employed to examine such evidence including their individual applicability, cost, and validity. The course will also address the legal issues arising from the use of existing and evolving forensic science techniques in legal proceedings. Throughout the course, students will discuss the professional, legal, and ethical issues surrounding forensic science applications in law enforcement, security, and intelligence applications. This course includes a laboratory limiting its enrollment to 20 students. This course may be credited toward the Physical and Life Sciences requirement or as one of the Designated Electives.
Prerequisites: AES 111, or AES 112 or equivalent basic biology course with a lab, or instructor’s approval.

SIS 315
Studies in Global Intelligence I (3,0)
3 Credits
This course will examine the uses of strategic intelligence by world leaders in shaping policy and the effects of strategic intelligence on world events. Issues to be covered include theoretical models of strategic intelligence; intelligence collection, evaluation, analysis, production, and dissemination; intelligence oversight; covert and clandestine operations; intelligence bureaucracies; ethical and moral issues in intelligence; counterintelligence. The course emphasizes strategic intelligence in the business, political, military, scientific, and technological domains.
Prerequisite: COM 223 or permission of the instructor.

SIS 317
Political Change, Revolution, and War (3,0)
3 Credits
This course is designed to familiarize the intelligence professional with how major events and systemic changes occur in the international system through wars and revolutions. It also examines political changes that occur in a slower, more evolutionary way. In both cases, the approach is through a study of historical and contemporary examples. The signals that political systems give off as they approach major structural change are examined in some detail, as are the structures of revolutions and conventional and unconventional wars, including asymmetrical wars. Social and economic trends that shape more evolutionary political change are also studied. All forms of change in the international system are of importance to the intelligence analyst, who must warn the policy community of anticipated developments of importance to the government and, subsequently, explain the implications of what has occurred. The course will enable the student to understand predictive analysis and modeling and provide analytical tools with which to deal with changing events.
Prerequisites: SS 204, SS 325, SS 310; and SIS 200 or permission of the instructor.

SIS 320
Topics in Global History, Politics, and Culture (3,0)
3 Credits
This course provides the student with an opportunity to focus more deeply on a region of the world, a par-
ticular culture or period in history, or a specific international problem. The topic covered by the course in a particular semester will vary according to student and program needs. The regions to be covered on an as-needed basis will include Europe, Latin America, the Middle East, Africa, and Asia. Alternatively, the course could focus on a topic such as Islam in the contemporary world, the weaponization of space, the implications of world migratory patterns, changing issues in international development, or the spread and implications of pandemics. Students may repeat the course in order to study another region or topical area.

Prerequisites: SS 110 or LCH 400, and 325; or permission of the instructor.

SIS 323

Intelligence and Technology (3,0)

3 Credits

This course will examine the whole arena of intelligence and technology, beginning with the World War II period, when science and technology came to play a critical role in intelligence. The course will cover technical intelligence-collection methodologies and systems, the use of aircraft and space-based vehicles as collection platforms for photo-optical and digital imagery, radar imaging, infrared and multi-spectral imagery, signals intelligence, etc. The course will provide a technical understanding of these methodologies, as well as an analysis of their place in all-source collection. The course will also examine the current development and implications of intelligence technologies, such as the emergent UAV systems.

Prerequisite: SIS 315 or permission of the instructor.

SIS 326

Personal Security and Defensive Skills (3,0)

3 Credits

Basic instruction in personal security through historical, technological, and practical education and training in the art and science of personal security awareness and defense for the professional. A comprehensive education on firearms history, laws, mechanics and ballistics, technology, current events, cultural philosophies and psychology, and very large emphasis on safety from varying perspectives.

SIS 328

Intelligence Analysis, Writing, and Briefing (3,0)

3 Credits

This course is designed to strengthen the student’s analytical and communications skills, preparatory to a career in intelligence and corporate security arenas. The course will enable the student to understand predictive analysis and modeling and will provide analytical tools with which to deal with changing events. Included among the latter are computer-based analytical programs currently used intensively in the intelligence community, as well as familiarity with intelligence and warning matrices and link analysis. The student also is trained to write intelligence briefs and required to practice this style and format under short deadlines. The student also will write a longer intelligence assessment and then brief that to the class.

Prerequisite: COM 223 or permission of the instructor.

SIS 330

World Political Thought (3,0)

3 Credits

This course will survey world political thought from the classical period to the present. The prevailing political philosophy in each major epoch of world history will be presented, with a particular focus on a key thinker. These will include Sun Tzu in classical China, Katuliya in ancient India, Plato in classical Greece, Cicero in the Roman Empire, Saint Augustine and St. Thomas Aquinas as Christian thinkers, Alfarabi in Islam, and Machiavelli in the Renaissance. Much of the course will deal with the Western political tradition: Thomas Hobbes, Hugo Grotius, Benedict Spinoza, John Locke, Montesquieu, the American Federalists, Edmund Burke, Hegel, Alexis de Tocqueville, Marx and Engels, John Dewey, and Leo Strauss. Two modern non-Western thinkers, Mohandas K. Gandhi and Mao Zedong, also will be examined. The student should become familiar with the major themes in political thought: realism, ideal-
<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIS 335</td>
<td>Counterintelligence (3,0)</td>
<td>3</td>
<td>Counterintelligence is the study of how to protect one’s intelligence community from external penetration, including one’s sources and methods, personnel, and assets, how to discover and evaluate successful outside penetrations, and how to penetrate hostile intelligence services. The course will cover the history of counterintelligence operations of the U.S. and provide case studies of successful operations against the U.S. and vice versa. It will look at motivations for betrayal, investigatory approaches, the legal domain, and the range of counterintelligence targets. Included in the latter will be an examination of how hostile powers increasingly attempt to acquire high technology, software, and economic information. Prerequisite: SIS 315 or permission of the instructor.</td>
</tr>
<tr>
<td>SIS 400</td>
<td>International Security and Globalization (3,0)</td>
<td>3</td>
<td>An analysis of 21st-century international security issues related to scientific and technological change. Topics include the nature of security-economic, sociocultural, and military; political leadership/followership, decision making, and conflict resolution; political violence, especially terrorism and ethnic conflict; intelligence and counterintelligence analysis and operations; weapons proliferation; information warfare; the politics of international organized crime; bureaucratic evil; internal dislocation and immigration; and the politics of public health. A special focus throughout the course will be on the aviation and aerospace industries: policies and operations, safety, and security. This course will emphasize science, technology, and globalization as the environment in which concepts of international security evolve and as impacted by international security phenomena. Prerequisites: College-level psychology, college-level history and SS 327 or permission of instructor.</td>
</tr>
<tr>
<td>SIS 405</td>
<td>Environment and Security (3,0)</td>
<td>3</td>
<td>This course is designed to introduce students to the contingencies and conflicts posed by the intersection of security and environmental issues, including disputes over ground water rights, international rivers, scarce energy resources, manipulation of crop gene pools, genetically modified crops, global migration, international treaties and conventions on environmental issues, and global climate change. Students will be introduced to environmental issues that pose significant security risks to a nation, affect a nation’s economic wellbeing and/or military preparedness, and pose challenges to those laws governing the protection of the natural environment. Ethical issues will also be addressed, particularly as these relate to policy making on issues that span both environmental and security concerns. Prerequisite: SIS 315 or permission of the instructor.</td>
</tr>
<tr>
<td>SIS 410</td>
<td>Corporate Security Management and Operations (3,0)</td>
<td>3</td>
<td>During this course students will learn the basic security concepts and methods employed in protecting the personnel, assets, and information of domestic and international corporations. Students will become familiar with the best security practices and their application in private business. The students will review the types of corporate security organizations and the role of the key corporate security manager in a corporation’s hierarchy. Another area of discussion is the expenditure of corporate resources for security and related budgetary planning. Students will gain a familiarity with physical security equipment including its application, effectiveness, and cost. Students will learn about access control and identification, security system design and application, close circuit television and surveillance, security and theft investigations, and executive protection. Protective measures against terrorism, natural disaster, and workplace violence will also be covered. During the course, students will be required to develop a security organization and budget for a fictitious corporation including designing and budgeting for a new facility to demonstrate their understanding of the course material. Prerequisite: BA 201 or equivalent with instructor approval.</td>
</tr>
</tbody>
</table>
| SIS 415 | Studies in Global Intelligence II (3,0) | 3 | This course is one of the three options that students may choose in order to complete their senior project requirement in the GSIS program. It is only available to students with junior or senior standing. It provides an intensive, semester-long simulation for
teams of students assuming the roles of political, military, economic, or scientific and technological intelligence case officers. Through the semester-long immersion with an intelligence tasking, students will be expected to demonstrate sophistication with case officer-agent relationships; staffing and coordination involving the various combinations in one’s intelligence station, among stations, and between one’s station and regional and central headquarters; intelligence briefings, executive summaries, and estimates; credibility and risk analysis, both of sources and of recommendations concerning specific covert action, espionage, and counterintelligence operations; operations/physical/communications/personnel securities; and the intelligence opportunities, limitations, and threats presented by today’s era of globalization.

Prerequisite: SIS 315 or permission of the instructor and junior or senior standing.

SIS 416

Introduction to Middle Eastern Comparative Law (3,0)

3 Credits
The most exciting development in American legal thinking in the last 50 years is the quest to understand and improve law by studying law in light of other disciplines and traditions. The Jewish legal and Middle Eastern tradition is studied in light of the disciplines of the humanities and in light of secular and religious legal traditions, such as American Constitutional law, Islamic law, and Canon law. The interdisciplinary and comparative study of Jewish and Middle Eastern law contributes to the understanding and development of Western principles of law and enhances the academic study of other fields of Judaism and Islam and, in turn, enriches the study of Constitutional law, other traditions, and the disciplines of the humanities.

Prerequisites: SIS 200, SS 320.

SIS 418

Islam: Origins, History, and Role in the Modern World (3,0)

3 Credits
The course is a detailed introduction to Islam: its origins, history, and contemporary relevance in the worlds of thought, ideas, political mobilization, and military affairs. The course examines the life and teaching of the Prophet Muhammad, the Qur’an (Koran), the early history and territorial expansion of the Umayyads, the glories of the Abbasids, the major sectarian splits (Sunni, Shi’a, Ismailiyya), the Sharia and the Orthodox Tradition, Sufism, the Sultanates, the impact of Western colonialism, the modernizers and the orthodox reaction, the Iranian Revolution, and the rise of “political Islam” in the Sunni world, including the emergence of Islamism, neo-Wahabbism (Al-Qa’ida), and jihadi movements in Afghanistan, the Balkans, the Caucasus, the Philippines, and Kashmir.

Prerequisite: SS 110 or LCH 400.

SIS 420

Aviation Security and Technology (3,0)

3 Credits
This course will concentrate on the disciplines of security and intelligence as applied to aviation. Students will learn to apply the four core security disciplines: communications security, operations security, physical security, and personnel security. Of prime concern in this course is airport/aviation readiness to prevent and respond to the following threats: hijackings, CBRN attacks, bombings, missiles, and shootings as perpetrated by terrorists and/or various nonpolitical hijackers. Other topics include airport familiarization and safety; post 9/11 responses by the public, industry, and government; airport hardening; security screening; first responder roles and needs; the off-airport interface and multimodal infrastructure; cargo and general aviation issues; international security; biometrics and other emerging technologies; and airline security issues.

Prerequisites (for GSIS students only): SIS 325 and SIS 410; or permission of the instructor.

SIS 421

History and Philosophy of Law/Jurisprudence (3,0)

3 Credits
This course will examine the practice and theory of specified subject areas of law. This course is concerned with the development and critique of theories that have impacted the development of law as well as practices in specific subject areas. Hence, it is a course about general approaches to law and legal thinking. The course will examine a number of contemporary approaches actively pursued in U.S. law schools, looking at works in, feminist legal theory, legal pragmatism, critical race theory, law and literature, and some “centrist” legal theory. Other approaches may be included based on student interest. Students will be responsible for an in-class presentation on subjects to be arranged, as well as a final paper. Preparation and active participation will be expected.

Prerequisites: SIS 200, SS 320.
SIS 422
Homeland Security and Technology (3,0)
3 Credits
This course will examine the whole range of issues relevant to the defense and security of the U.S. homeland. These will include transportation security, immigration and border security, cargo security, the presence of radical elements in the U.S., the statutory and regulatory structure, and the institutions and agencies responsible for homeland security at the federal, state, and local levels. Legal and ethical issues also will be examined, as these relate to national security and privacy.

Prerequisite: SIS 315 or permission of the instructor.

SIS 425
Information Protection and Computer Security (3,0)
3 Credits
This course provides students with a familiarity with information protection programs in both the government and private sectors. The course also provides students with an overview of computer security including physical security practices and hardware and software protection. Students will learn the importance of applying proper security protection measures to classified and sensitive information to prevent its intentional or unintentional unauthorized disclosure. Students will review the U.S. government’s regulatory scheme for protection of its classified information including several case studies of unlawful information disclosure. Similarly students will review information protection practices in private organizations and their importance. Students will examine and discuss the various aspects of computer security including physical protection of hardware, software protective programs, and employee security awareness programs. The students will also learn how to detect and investigate computer crimes. Finally, students will draft an information security program for a fictitious government or private organization to demonstrate their full understanding of the course material.

Prerequisite: IT 109 or equivalent with instructor approval.

SIS 430
Emergency Management and Contingency Planning (3,0)
3 Credits
This course provides students with a comprehensive overview of emergency management practices in both government and private organizations in the U.S. The students will become familiar with the basic concepts, principles, and terms used in the emergency management discipline that includes preparedness, mitigation, response and recovery operations. Students will focus on the planning and leadership roles during natural and man-made disasters and interaction between government and private organizations during such incidents. During the course, the students will discuss the individual roles of the federal, state, and local governments and the private sector in such emergencies. The students will become familiar with the National Response Framework and the National Incident Management System and their application during national disasters. Students will also examine the essentials of business contingency planning in the private sector for disasters. Finally, students will plan and participate in a mock disaster drill to demonstrate their full understanding of the course material.

SIS 470
Senior Cooperative Internship (3,0)
3 Credits
This course is one of three options that students may choose in order to complete their senior project requirement in the GSIS Program. This course is only available to students with junior or senior standing and with the prior approval of either the Department or Program Chair. This course is designed to permit the student to use the security and intelligence knowledge gained throughout the program in a related professional environment while sharpening their research and analytical skills. The sponsoring organization will independently evaluate the student’s work skills and on-the-job performance. The student is also required to demonstrate their research and analytical skills by identifying a problem or issue related to the sponsoring organization’s responsibilities or functions, analyzing the various solutions, determining the most effective solution and detailing the results of their analysis in a major research paper. The student’s faculty sponsor will review and evaluate the student’s research project and the results of both evaluations will be combined to arrive at a final course grade.

Prerequisite: Junior or senior standing.

SIS 475
Senior Thesis (3,0)
3 Credits
This course is one of three options that students may choose in order to complete the senior project requirement. This course is for students who have at least a 3.40 GPA and who plan to attend graduate or law school. It is a classic thesis research course on a topic that requires an intensive review of the relevant
literature, extensive research, and superior organization and writing. The senior thesis should provide a degree of originality in research, research method, and/or analysis. Each student will be supervised by a faculty committee and will be required to defend his or her thesis before a faculty panel and the interested public. Students wishing to take this course must apply to the Chair of the Department of Global Security and Intelligence Studies within the last third of the first semester of their senior year.

Prerequisite: Senior standing.

SIS 199 - 499
Special Topics in Global Security and Intelligence Studies
1-3 Credits
Individual independent or directed studies of selected topics in Global Security and Intelligence Studies related topics.

Prerequisites: Consent of instructor and approval of department or program chair. May be repeated with a change of subject.

Social Sciences

SS 110
World History (3,0)
3 Credits
Designed primarily as a survey of the development and evolution of Western civilization from 1500 to the present. Emphasis is placed on the effect of Western influence on the world.

SS 120
U.S. History (3,0)
3 Credits
From 1865 to the present. Reconstruction, the age of big business, the U.S. as a world power, World War I, World War II, the Great Depression, and its aftermath.

SS 130
History of Aviation in America (3,0)
3 Credits
A survey of the history of America in the 20th century, emphasizing the explosive growth of aviation as a major influence on the economic, military, and societal development of the U.S.

SS 204
Introduction to Geography (3,0)
3 Credits
A survey course designed to acquaint the student with types of maps, map reading and use, as well as to show relationships between geography and economics, culture, and geopolitics. Humans and their use of their environment are stressed, along with the usual emphasis on places, names, and locations. Ancillary topics will include climate, demography, and transportation.

SS 210
Introduction to Sociology (3,0)
3 Credits
Integrated survey of the fundamental concepts of culture, forms of collective behavior, community and social organization, social interaction, and social change. The social effects of aviation and the impact of science on the social order living in an air age will also be investigated.

SS 260
Cultural Anthropology (3,0)
3 Credits
In a time of globalization, geopolitical movement, and increased cultural contact, an understanding of basic cultural constructs is necessary for global political, economic, military, and human behavior analysis. This course examines the nature of culture, with particular emphasis on theoretical and methodological approaches to studying culture. Cultural institutions, such as family, clan, tribe, and other kinship networks, customary political and religious organizations, and village communities will be studied. Social behaviors, shaped by various cultures, as exhibited in groups, as well as internalized social behaviors at the individual level, will be examined.

SS 290
History of Modern Europe (3,0)
3 Credits
This course is a survey of the major social, economic, political, and cultural forces that shaped contemporary Europe. It traces the 19th century surge of optimism that the problems of humankind could be solved by ideologies such as liberalism, nationalism, and socialism through to the death of that optimism in the bloody conflicts of the 20th century. The class will also examine the 21st century directions of Europe and European unity.
Undergraduate Course Descriptions

SS 302
Evolution of Scientific Thought (3,0)
3 Credits
Traces the development of science from the earliest times through the modern period, with particular emphasis given to our changing concepts of nature and of science itself. (Also offered as PS 302. Students receive either Social Sciences elective credit or Physical Sciences elective credit, but not both.)

Prerequisites: Any course from the HU 140 series and either PS 101 or PS 102 or PS 103 or PS 150 and PS 215.

SS 311
U.S. Military History 1775-1900 (3,0)
3 Credits
Military history with emphasis on military policy, organization, and technology as they relate to U.S. political, social, and economic developments from 1775 to 1900.

SS 312
Personality and Profiling (3,0)
3 Credits
This course provides a rigorous and comprehensive foundation for explaining, understanding, predicting, and influencing people. This foundation will be applied to stopping people from violating trust—namely, committing espionage—and to identifying and controlling them as quickly as possible after they have violated trust. The course will largely focus on personality theory and research based on scientific methodologies. The course also will explore other approaches to human knowledge and meaning including the philosophy of epistemology, literary criticism, and the interpretation of cultural products such as film, music, dance, and painting. By course’s end, students will have profiled a U.S. citizen convicted of spying against his country.

SS 320
Government of the U.S. (3,0)
3 Credits
Basic issues of democracy in the U.S., constitutional principles, and the executive, legislative, and judicial branches of government.

Prerequisite: College-level history or permission from the instructor.

SS 321
U.S. Military History 1900-Present (3,0)
3 Credits
Military history with emphasis on military policy, organization, and technology as they relate to U.S. political, social, and economic developments from 1900 to the present.

SS 326
Russian-U.S. Relations (3,0)
3 Credits
This course explores the development of Russian-United States economic and political relations, emphasizing the era of the 20th century.

Prerequisite: College-level history or permission from the instructor.

SS 327
International Relations (3,0)
3 Credits
This course will examine historical and contemporary themes in international relations that set the stage for analyzing the current and future international system. Toward this, the curriculum is designed to introduce the student to the theory and practice of international relations with the objective of enabling a greater understanding of the global context that shapes issues and outcomes in world affairs. Extending beyond simple description, the student will develop an analytic and anticipatory capacity in which to explain foreign policy and international politics.

Prerequisite: College-level history or permission from the instructor.

SS 333
U.S.-Asian Relations (3,0)
3 Credits
This course explores the development of U.S.-Asian political, cultural, and economic relations, from their beginnings in the 19th century to the present. The course will examine America’s domestic motivations for expanding into the Pacific, the various impacts that the U.S. has had on Asian nations, and Asia’s collaboration with and resistance to the American presence.

Prerequisite: Lower developmental history course or junior standing or permission of the instructor.
Undergraduate Course Descriptions

SS 336
The Modern Middle East in World Affairs (3,0)
3 Credits
A historical examination of the land, societies, cultures, economics, and politics of the Middle East from World War I to the present in relation to recent and current world events and policies.
Prerequisite: College-level history or permission from professor.

SS 340
U.S. Foreign Policy (3,0)
3 Credits
A survey of the evolution of current U.S. foreign policy, stressing the factors that affect and shape this policy. Attention is given to current governmental offices, agencies, and departments and the role each plays in policy formulation. Emphasis is on the period since World War II.
Prerequisite: College-level history or permission from the instructor.

SS 360
Environmental Law (3,0)
3 Credits
Provides a general introduction to the field of planning, and examines the procedural approaches shared by practitioners working in all areas of contemporary planning. Introduces legal concepts and doctrines relevant to pollution control, assessment of environmental impacts, and land use.
Prerequisite: AES 142 or permission of instructor.

SS 363
Inter-American Relations (3,0)
3 Credits
This course explores the development of U.S. political and economic relations with Latin America from their beginnings in the 19th century to the present.
Prerequisite: SS 110 or SS 120 or SS 130 or junior standing.

SS 410
International Human Rights (3,0)
3 Credits
This course will address the issues of human rights at the global level from a historical and sociological perspective. It will provide an introduction to basic human rights philosophy, principles, instruments, and institutions. The course will cover the conceptual foundations of the idea of rights, the international human rights movement, and various human rights issues, including the Holocaust and other cases of mass genocide. As with any social science course, students are expected to engage in readings and write critical essays.
Prerequisite: SIS 200.

SS 299 - 499
Special Topics in the Social Sciences
1-6 Credits
Individual independent or directed study of selected topics in the areas of history, sociology, psychology, and human culture in general.
Prerequisites: Consent of instructor and approval of the department chair.

College Success

UNIV 101
College Success (2,0)
1 Credit
A course in which students assess and develop the personal, interpersonal, intellectual, and social skills necessary to succeed in college. Time management, study skills, goal clarification, career information, and college resources are included. This course is available to freshmen only.

UNIV 400
Career Development (1,0)
1 Credit
Introduces students to various elements involved in obtaining a position in their chosen fields. Topics include self-assessment, research and selection of a career path, sources of jobs, job-search techniques, resumes and letters of application, references, interviewing skills, business etiquette, and professional image. Each student will develop a career portfolio including personal and professional information related to career goals.

Applied Meteorology

WX 201
Survey of Meteorology (3,0)
3 Credits
A survey course in atmospheric science that includes applications to flight. Included is a systematic development of the following: thermal patterns, horizontal and vertical pressure patterns, atmospheric
circulation, local winds, jet streams, stability, vertical motion, moisture, clouds, precipitation, air masses, fronts, cyclones, thunderstorms and aviation hazards. Students will study and make use of surface weather observations, surface maps, and constant pressure maps.

Prerequisite: MA 006 or equivalent.

<table>
<thead>
<tr>
<th>WX 202</th>
<th>Current Weather Discussion (1,0)</th>
<th>1 Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>This course takes advantage of real-time weather data to introduce, review, and apply various topics that are developed in other courses in our program. Two, three, and four-dimensional analysis techniques are used to examine the evolution of previous, current, and forecast weather conditions. Subject matter will vary from semester to semester. The course is repeatable for a total of three credits.</td>
<td>Prerequisite: WX 201 or WX 252.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WX 210</th>
<th>Introduction to Geographic Information Systems (3,0)</th>
<th>3 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geographic Information Systems (GIS) encompass all aspects of spatial data analysis from data acquisition and manipulation through problem solving to the graphic presentation of results. This course surveys GIS theory and applications as students learn to store, retrieve, manipulate, analyze, and display spatial data according to a variety of user-defined specifications. Lectures will emphasize fundamental principles of GIS while computer-based exercises will emphasize training.</td>
<td>Prerequisite: WX 201 or WX 252.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WX 220</th>
<th>Data Analysis and Visualization (3,0)</th>
<th>3 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>This course builds on CS 125 to include fundamentals of programming in IDL (Interactive Data Language), addressing a wide range of meteorological problem-solving, data analysis, and visualization techniques. Students will use a problem-solving approach for understanding IDL structures, procedures, and functions, with emphasis on scientific techniques and applications. The students will also receive a brief introduction to Fortran and C++.</td>
<td>Prerequisite: CS 125.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WX 252</th>
<th>Introduction to Meteorology (3,0)</th>
<th>3 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>A survey course in meteorology for meteorology majors, covering the following topics: atmospheric composition and structure, energy exchange, thermal patterns, atmospheric moisture, clouds, stability, precipitation processes, wind and pressure, global circulation, upper-level winds and jet streams, local winds, air masses, fronts, mid-latitude cyclones, weather forecasting, thunderstorms, and tropical meteorology. Students will also be introduced to weather observations, surface and upper-air maps, the Skew-T log-P chart, and satellite and radar imagery.</td>
<td>Prerequisite: WX 201 or WX 252.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WX 261</th>
<th>Applied Climatology (3,0)</th>
<th>3 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>An in-depth survey of the varied climates of the world and the impact of climate on aviation. Emphasis is placed on understanding energy exchange processes that control climate and describing in detail how and why temperature, precipitation and wind vary during the year and in relation to geography. Included is a treatment of climate variability, including how and why climate is thought to have changed in the past, how it might change in the future and the tools used to understand this variability.</td>
<td>Prerequisite: WX 201 or WX 252.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WX 270</th>
<th>Weather Information Systems (3,0)</th>
<th>3 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>An introduction to the various states of weather-sensing equipment modernization and the systems that deliver weather information to various users. The development of various sensing devices are explored and the current technology explained.</td>
<td>Prerequisite: WX 201 or WX 252.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WX 301</th>
<th>Aviation Weather (3,0)</th>
<th>3 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>An expansion of WX 201, including the following theoretical concepts: hydrostatic instability, baroclinic instability, thermal wind, and kinematic fields. These will be integrated into real-time weather analysis of synoptic patterns involving mid-latitude cyclones, advection, frontal systems, and jet streams. Practical application will be achieved through presentation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
of current and historical weather data emphasizing common hazards to aviation such as thunderstorms, strong winds, fog, icing, and turbulence. An introduction to weather forecasting concepts will be presented.

Prerequisite: WX 201 or WX 252.

WX 353

Thermodynamics of the Atmosphere (3,0)
3 Credits

A course for those requiring an in-depth understanding of the physical processes governing the atmosphere. Includes discussion and quantitative treatment of meteorological conventions, atmospheric state and structure, radiation, heat/energy transfer, boundary layer structure and fluxes, moisture, stability, cloud formation, and precipitation.

Prerequisites: WX 201 or WX 252.

WX 354

Dynamics of the Atmosphere (3,0)
3 Credits

A course for those requiring an in-depth understanding of the dynamic processes governing the atmosphere. Includes discussion and quantitative treatment of atmospheric forces, the equations of motion, local and global winds, air masses and fronts, middle-latitude cyclones, quasi-geostrophic theory, thunderstorms, and hurricanes.

Prerequisites: WX 201 or WX 252, and WX 353.

WX 355

Weather Analysis (5,0)
5 Credits

This course presents conceptual models of synoptic weather features and applies them to analysis of meteorological data fields. Meteorological codes for surface and upper air data are surveyed and the basic conventions of surface and upper air charts are introduced. Labs cover the standard tools of weather analysis and give students practice constructing and using isopleths of pressure, temperature, dew point, and geopotential height. The horizontal and vertical structure of fronts is examined through pattern recognition of standard meteorological variables, atmospheric thickness, and cross-section analyses. Methods for analyzing wind fields, such as streamlines, air parcel trajectories, and jet stream identification, are presented. Students practice conceptually integrating satellite and radar data to verify and refine their analyses in accordance with dynamical principles. This course covers both manual (hand-drawn) weather map techniques and computer meteorological analysis software packages.

Prerequisite: WX 354.

WX 363

Thunderstorms (3,0)
3 Credits

This course provides tools for analyzing and forecasting thunderstorms and their associated hazards. Key characteristics of the thunderstorm and its environment are explored using both case studies and real-time weather data. Students examine atmospheric soundings to determine the likelihood of storm development and the amount of energy available for thunderstorms. Vertical wind shear is analyzed for clues about storm organization and severity. Other information, such as weather charts, computer models, satellite imagery, and Doppler radar imagery, is used to observe the characteristics of thunderstorms and the weather patterns that favor them. Students gain a basic scientific understanding of thunderstorm behavior as well as practical experience observing and predicting them.

Prerequisite: WX 252 or WX 301 or WX 353.

WX 364

Weather for Aircrews (3,0)
3 Credits

Making use of the Weather Center and the Internet, students collect and study weather data from around the world. Emphasis is placed on decoding information contained in the remarks section of weather observations and on the differences between North American weather charts and those produced in other parts of the world. Students investigate the flying conditions and aviation environment over the seven continents. The proper operation of airborne weather radar is studied. Students identify weather hazards by using ground-based weather radar and satellite imagery.

Prerequisite: WX 252 or WX 301.

WX 365

Satellite and Radar Weather Interpretation (3,0)
3 Credits

A practical introduction to meteorological interpretation of satellite and weather radar imagery. This course surveys the basic physics of electromagnetic (EM) radiation and shows how characteristics of the EM spectrum are exploited in passive (satellite) and active (radar) remote sensing to create digital images of geophysical information. The theory of radar signal propagation and precipitation estimation is
applied to the meteorological interpretation of radar imagery and supplemented with practical analysis of various radar product types. Weather satellite image types, including visible, conventional infrared, and water vapor channels and their meteorological applications, are examined. Real-time satellite identification of meteorological phenomena will be emphasized, including mountain waves, midlatitude cyclones, fronts, jet streams, troughs, ridges, vorticity, cloud types, fog, precipitation, ordinary and severe thunderstorms, tropical waves, and hurricanes. Surface and upper-air weather maps will be used to enhance the students’ understanding of satellite image signatures.

Prerequisite: WX 252 or WX 301 or WX 353.

WX 390
Atmospheric Physics (3,0)
3 Credits
This is a technical course that explores physical applications in the field of meteorology. Course topics include elements of earth-sun geometry, gravitation, kinetic theory, the physical structure of the atmosphere, waves, radiative transfer, atmospheric chemistry, remote sensing and atmospheric electricity.

Prerequisites: MA 243, PS 160, WX 220 and WX 353.

WX 420
Advanced Atmospheric Thermodynamics (3,0)
3 Credits
This course provides an application of physics and calculus to the study of atmospheric thermodynamics. The course covers such topics as hydrostatics, conservation of energy, the Ideal Gas Law, temperature relationship to kinetic energy, specific heats, enthalpy, and entropy. Additionally, water and its transformations, the thermodynamics of dry, moist, and saturated air, and thermodynamic diagrams are covered.

Prerequisites: PS 160 or PS 208, WX 353, MA 242.

WX 427
Forecasting Techniques (3,0)
3 Credits
This course provides an introduction to the world of weather prognostication. Topics include the traditional forecast methods based on weather analysis techniques, up through the latest computer-generated weather prediction models. The student is exposed to techniques for forecasting tomorrow’s weather as well as seasonal weather trends.

Prerequisites: WX 353, WX 354, WX 355, WX 363, and WX 365.

WX 457
Weather Operations Seminar (3,0)
3 Credits
This course synthesizes previous knowledge, examining methodologies employed by decision-makers in weather forecasting, military operations, flight planning operations and hydrology. Preparation for graduate school or a technical career will be provided by teaming each student with a meteorology faculty mentor for a basic or applied research project culminating in the presentation of a research paper in the format of a professional journal submission. Effective written and oral communication skills will be emphasized throughout.

Prerequisite: WX 355.

WX 490
Advanced Dynamic Meteorology I (3,0)
3 Credits
This first course in atmospheric dynamics uses physics and calculus. The instruction includes such topics as equation of motion on a rotating Earth, balanced flow, kinematics, circulation theorem, conservation of absolute angular momentum, mass continuity, vorticity equation, and wind-pressure imbalance.

Prerequisites: MA 243, WX 354, and WX 420.

WX 491
Advanced Dynamic Meteorology II (3,0)
3 Credits
This is the second course in atmospheric dynamics, which uses vectors. It includes such topics as Rossby waves, quasi-geostrophic theory, and synoptic-scale instability theory.

Prerequisite: WX 490.

WX 299 - 499
Special Topics in Meteorology
1-6 Credits
Individual independent or directed studies of selected topics in applied meteorology.

Prerequisites: Consent of the instructor and approval of the program coordinator.
Embry-Riddle Aeronautical University graduate course offerings at the Prescott Campus are listed in alphabetical order, according to the following course designations:

MSA Master of Aeronautical Science

MSF Master of Science in Safety Science

The following courses are not necessarily offered every term, nor are they necessarily offered at all campus locations.

MSA - Aeronautical Science

MSA 602 The Air Transportation System 3 Credits

A study of air transportation as part of a global, multimodal transportation system. The course reviews the evolution of the technological, social, environmental, and political aspects of this system since its inception at the beginning of the 20th century. The long-term and short-term effects of deregulation, energy shortages, governmental restraints, and national and international issues are examined. Passenger and cargo transportation as well as military and private aircraft modes are studied in relation to the ever-changing transportation requirements.

Prerequisites: Demonstrated knowledge of aviation rules and regulations and economics.

MSA 613 Airport Operations Safety 3 Credits

A study of airport operations safety as applied to day-to-day operations. A review and analysis of all federal regulations applicable to operations and safety are conducted.

Prerequisites: Demonstrated knowledge of performance of airports and airline operations management or related field.

MSF - Safety Science

MSF 530 Aircraft Accident Investigation 3 Credits

An examination of investigation as it pertains to aircraft accidents from the perspectives of the administrative, regulatory, and practical field investigation aspects. Emphasis will be on the evidence-gathering, preservation, and processing phases of accident investigation. An overview of organizations that conduct and participate in investigations, and an analysis of their roles in those investigations will be completed. Use of a laboratory will provide practical field experience. Research into investigative concepts and techniques will be an integral part of the course.

MSF 580 Industrial Hygiene and Environmental Protection 3 Credits

A study of the role and responsibilities of an industrial hygienist employed in technical industries. The course reviews the application of methods for the identification, evaluation, and control of industrial hygiene and environmental hazards encountered in the aviation and other workplaces. Specific hazards to be addressed include noise, vibration, ionizing and nonionizing radiation, thermal conditions, pressure, chemicals, airborne contaminants, and biological substances. Engineering and nonengineering controls as well as regulatory requirements will also be covered.
MSF 600
Quantitative Methods
3 Credits
This course is a survey of quantitative methods pertinent for safety practitioners. Topics include descriptive statistics, probability distributions, the idea of statistical significance, the distinction between parametric and nonparametric statistics, confidence intervals and hypothesis testing, correlation, regression, analysis of variance (ANOVA), and epidemiology.

MSF 601
Ergonomics
3 Credits
This course studies the most common source of musculoskeletal injuries in the American workplace. These injuries, commonly labeled as overexertion or repetitive stress, are found in various forms in all workplaces. The course begins with a study of work physiology and its implications for workplace design and workplace safety. It covers biomechanics and its implications for workplace design, low back pain, and other overexertion injuries. It covers the various cumulative trauma disorders, including the importance of risk factors such as force, frequency, and posture. Setting up and managing an ergonomics program are discussed.

MSF 602
Human Factors
3 Credits
This course studies the role of human factors in workplace and work task design with emphasis on complex technical industries including aviation/aerospace. This study of human factors includes traditional material such as anthropometry, control/display design, visual and auditory acuity and their importance in work design, circadian rhythms and their implications for work design and shift work, psychomotor skills, and learning and memory. It also includes the human role as it relates to unsafe acts, attitudes, errors, and deliberate actions. Finally, the course studies the interface between human factors in workplace design and human error.

Prerequisites: MSF 600 and demonstrated knowledge of behavioral science, college-level mathematics, including introductory statistics, and basic computer operations.

MSF 603
Occupational Safety
3 Credits
This course provides a broad overview of occupational safety. It begins with an exploration of the history of the subject, moves through the OSH Act, workers' compensation, safety program development and management, and finally addresses a series of specific hazards. These hazards include machine guarding, material handling equipment, fall protection, fire protection, building design, and lighting. The application of safety and health management principles to the management of complex technical industries including aviation/aerospace are covered using scenario evaluations to determine OSHA compliance, accident/injury data evaluation and analysis, and OSHA log completion.

MSF 605
Industrial Hygiene Measurement
3 Credits
This course provides students with the knowledge and skills necessary to conduct basic industrial hygiene surveys. Hands-on laboratory experience is provided for the students, starting with equipment calibration and ending with completing a field-sampling project. Particulate sampling for both total and respirable, gravimetric analysis, gas/vapor sampling with tubes and impingers, dosimeters, use of direct reading instruments and detector tubes, are all covered. The fundamentals of sample analysis are presented. Case studies are presented to emphasize the strategies used to select sampling locations, times, and individuals.

Prerequisite: MSF 580.

MSF 606
Control Methods in Occupational Safety and Health
3 Credits
This course studies the methods commonly used by OSH professionals to control aviation and industrial workplace exposures to health and safety hazards. The most commonly used control for industrial health hazards is industrial ventilation, so this control method is studied in detail, with students learning to complete basic ventilation system designs and to evaluate moderately complex designs. Students may also learn to use ventilation system testing equipment to verify that a system is working as designed and to troubleshoot a system that is not working properly. The proper use of and the potential failure modes associated with personal protective
equipment are evaluated. In addition, measurement and control methods for noise and vibration are examined through a series of lectures and class projects.

MSF 607
Epidemiology
3 Credits
Epidemiology is the basic science underlying all public health programs, whether implemented privately in industry or publicly by government organizations. This course will deal with the distribution and causes of diseases (including all forms of illness, injury, and accidents) in specified populations. This will be applied to the control of health problems through the understanding of the causes of those problems.

Prerequisite: MSF 600.

MSF 609
System Safety
3 Credits
An in-depth review of system safety management principles and system safety engineering techniques are combined in this course to enable students to fully comprehend their vital roles in preventing accidents. This course emphasizes the specialized integration of system safety analytical techniques and risk management into all phases of a system’s life-cycle using a system safety program that is tailored to an organization’s mission. System safety’s relationship with other disciplines such as reliability, maintainability, human factors, and product liability will be examined in the context of government, military, and general industry.

Prerequisite: MSF 600 and demonstrated knowledge of college-level mathematics, including introductory statistics.

MSF 610
Industrial Security
3 Credits
This course will intensively focus on the various aspects of business intelligence and industrial security as they apply to complex and technical industries. Of prime concern are risks, threats, and countermeasures. Topics include intelligence theory and intelligence operations; foreign and domestic organized crime; industrial espionage; riots and disasters; terrorism; sabotage; hijacking; internal security; cybercrime; legal and ethical issues; de facto and regulatory roles of local, regional, and national governments, international agencies, and nongovernmetal organizations; social and cultural factors; strategic planning and investment vulnerabilities; and physical, operations, communications, and personnel securities.

MSF 611
Case Studies in Safety
3 Credits
This course will include a series of case studies that illustrate the role of human characteristics, behavior, performance, and preference in the failure of simple and complex systems. The case studies will be drawn from many domains, including aviation, transportation, manufacturing, process industry, construction, agriculture, consumer products, retail, public safety, communications, medicine and rehabilitation, and sport and recreation. Students will be given the opportunity to use system analysis and design techniques to evaluate common failure modes and explore the conditions conducive to system success or failure.

Corequisites: MSF 601, MSF 602.

MSF 612
Research Methods
3 Credits
This course will emphasize research methodologies leading to the development of research problems. The course will discuss problem and sample selection, data collection, and literature review.

Prerequisite: MSF 600.

MSF 613
Aviation Safety
3 Credits
This course is a study of the aviation system as it relates to human factors and safety. The application of human factors to aviation is inextricably connected with safety. The worldwide aviation system will be covered with an emphasis on managing safety through regulatory guidelines, industry initiatives, and airline crew operations. Human factors topics will include psychological and physical implications for error management.

MSF 614
Safety Ethics
3 Credits
Safe practices in any workplace require good decisions from the managing safety professional. Many of the decisions to be made are of a technical nature based on the good practices of that profession.
Others, though, have a foundation in responsible relationships with other people whether they are colleagues, supervisors, or customers. These foundations have a central element of professional ethics or morality and will have a significant impact on the safety environment.

MSF 630
Aircraft Accident Analysis
3 Credits
A critical analysis of selected aircraft accidents that involves extensive field work, teaming, a thorough investigation, detailed examination, group-process discussions, and decision making. Each team of student investigators will produce a professional report that includes the facts, the scenario, and an analysis of all potential factors, findings, and recommendations. Identification of accident prevention measures as a product of the analysis process is stressed. Identification and analysis of available and future loss-prevention technologies will be completed.

MSF 635
Advanced Aircraft Survivability Analysis and Design
3 Credits
Entails a detailed analysis of the aircraft accident environment with particular emphasis on survivability factors. Explores factors and forces that cause injury and examines the injury-role played by impact forces and occupiable space compromises. Examines crashworthiness and delethalization technologies and concepts with a focus on the best ways to protect occupants during a crash. Selected aircraft accidents will be used as case studies. An in-depth review of basic kinematics and development of injury-related information will be completed.
Prerequisite: MSF 530.

MSF 655
Airline and Operations Safety Management
3 Credits
This course addresses the application of safety management principles and techniques to the management of airline operations and safety. Topics include hazard identification, accident/incident investigation, flight safety, cabin safety, ground safety, and emergency response programs. Regulatory requirements and airline standards as well as accident prevention strategies are included throughout the course.
Prerequisite: MSF 615.

MSF 675
Aviation Maintenance Safety
3 Credits
A study of the aviation maintenance safety practices, procedures, and policies in use throughout the aviation industry. Includes the role of maintenance safety in relation to the overall safety management program in the organization. Case studies of maintenance-related accident prevention and loss control scenarios. The influence and role of the regulatory and compliance agencies in aviation maintenance safety.

MSF 680
Integrated Safety Operations - Capstone
3 Credits
Study of management theory, integrated arrangements, common constraints, developmental level, essential guidelines, staff liaison, project improvement, effectiveness audits, and collaboration needed to ensure success of the safety function. May include a written document on a safety topic, which exposes the student to the technical aspects of writing. This course is included in the MSSS curriculum to provide the student with the opportunity to study how the various domains of the safety and health occupation are integrated into a single program.

MSF 685
Aviation Security
3 Credits
This course will intensively focus on the various aspects of business intelligence and industrial security as they apply to aviation and to aviation safety. Of prime concern are risks, threats, and countermeasures. Topics include intelligence theory and intelligence operations; foreign and domestic organized crime; industrial espionage; riots and disasters; terrorism; sabotage; hijacking; internal security; cybercrime; legal and ethical issues; de facto and regulatory roles of local, regional, and national governments, international agencies, and nongovernmental organizations; social and cultural factors; strategic planning and investment vulnerabilities; and physical, operations, communications, and personnel securities. Readings, lectures, discussions, and case studies will be supplemented by team exercises resulting in security plans addressing risks, threats, countermeasures, and evaluative mechanisms.
MSF 686
Emergency Preparedness and Preplanning
3 Credits
This course is designed to increase the student’s knowledge of emergency response procedures, safety and health hazards, and enforcement issues for industry. Topics include a thorough discussion of scope, application, definitions, and other related standards; elements of an emergency response plan; training requirements; the incident command system; medical surveillance; and post-emergency response. Major elements involved in disasters and emergencies, preparedness planning, systems use, and attention to essential human services, with emphasis on community action and the development of successful, cost-effective strategies for implementing emergency and mitigation plans.

MSF 690
Graduate Research Project
3 Credits
A written document on a safety topic, which exposes the student to the technical aspects of writing. This course is included in the MSSS curriculum to provide students with the opportunity to pursue a project of special interest, but not to the level of a thesis. This is a required course for those students who choose not to write a thesis.
Prerequisites: MSF 600 and MSF 612.

MSF 696
Graduate Internship in Safety Science
1-3 Credits
Temporary professional or industrial work appointments made available to students enrolled in graduate programs at the University. An internship provides graduate students with an opportunity to extend their academic endeavors through the application of the theories and philosophies studied in the classroom to specific professional activities common to the workplace. They are academic/professional activities coordinated by the University between offering organizations and a graduate student.

MSF 699
Special Topics in Safety Science
1-3 Credits
Students may elect to perform a special, directed analysis and/or independent study in an area of particular interest. A detailed proposal of the desired project must be developed and presented to the center director or department chair for faculty review and recommendation at least three weeks prior to the end of registration for a term.

MSF 700
Thesis
3 Credits
A written document on a safety topic supervised throughout its preparation by the student’s thesis committee, which demonstrates the student’s mastery of the topic and is of satisfactory quality for publication.
Prerequisites: MSF 600 and MSF 612.
Faculty and Administration

Officials of the University

JOHNSON, JOHN P.
President; Professor, College of Arts and Sciences.
B.A. and M.S., Florida State University
Ph.D., Kent State University

Ayers Jr., Francis H.
Executive Vice President and Chief Academic Officer, Prescott Campus.
B.A., Virginia Polytechnic Institute and State University
M.S., Embry-Riddle Aeronautical University
Ed.D., Nova Southeastern University

Frederick-Recascino, Christina
Vice President for Research and Assistant to the President; Professor of Human Factors and Systems.
B.A., State University of New York
M.S. and Ph.D., University of Rochester

Heist, Richard H.
Executive Vice President and Chief Academic Officer, Daytona Beach Campus; Professor of Engineering.
B.A., Catawba College
Ph.D., Purdue University

McReynolds, Irene
Vice President, Human Resources.
B.S., Bryant College
M.B.A./A., Embry-Riddle Aeronautical University

Montplaisir, Daniel E.
Vice President, Institutional Advancement.
B.A., University of Central Florida
M.S., Indiana Wesleyan University

Murray, Michael O.
General Counsel.
J.D., Indiana University School of Law

Watret, John
Executive Vice President and Chief Academic Officer, Worldwide.
B.Sc., Heriot-Watt University
M.S. and Ph.D., Texas A&M University; P-ASEL

Weekes, Eric
Senior Vice President, Chief Financial Officer.
B.S., New York Institute of Technology
M.B.A., New York University

Legend

Letter designations for aviation qualifications are as follows:

A – Airplane
C – Commercial Pilot
G – Glider
H – Helicopter
I – Instrument
L – Land
P – Private Pilot
S – Seaplane
AD – Aircraft Dispatcher
IA – Inspection Authorization
ME – Multi-Engine
SE – Single-Engine
A&P – Airframe and Powerplant Maintenance Technician
AGI – Advanced Ground Instructor
ATP – Airline Transport Pilot
BGI – Basic Ground Instructor
CFI – Certified Flight Instructor
CTO – Control Tower Operations
DME – Designated Mechanic Examiner
DWE – Designated Written Examiner
HTA – Heavier Than Air
IGI – Instrument Ground Instructor
LTA – Lighter Than Air
SME – Single- and Multi-Engine
FCC – Federal Communication Commission
FE – Flight Engineer
AC – Advanced Graduate Credit
Faculty and Administration

Prescott Campus Academic Administration

BECK, ANGELA
Associate Professor of Humanities and Communications and Chair, Department of Humanities and Communications, College of Arts and Sciences. B.A. and M.A., San Diego State University; Ph.D., Northern Arizona University.

BLOOM, RICHARD
Associate Vice President for Academics and Professor of Psychology, Social Thought, and Global Security and Intelligence Studies. B.A. Columbia University; M.A. New School for Social Research; Ph.D., Kent State University.

CONE, MILTON L.
Professor of Electrical Engineering and Chair, Department of Electrical and Computer Engineering, College of Engineering. B.S.E.E. and M.S.E.E., University of Missouri; Ph.D., Air Force Institute of Technology.

DICK, ARCHIE
Dean, College of Arts & Sciences and Professor of Biology. B.A., Adams State College; M.S., Northern Arizona University; Ph.D., Arizona State University.

DICKER, ROBERT
Assistant Professor and Chair, Department of Aeronautical Science, College of Aviation. B.S., Embry-Riddle Aeronautical University; M.A., Webster University; C-ASMEIA; AGI; CFI.

GONZALEZ, PHILIP
Professor of Global Security and Intelligence Studies and Chair of Department of Global Studies, College of Arts and Sciences. B.A., Juniata College; M.A., M.A.L.D., and Ph.D., Fletcher School of Law and Diplomacy, Tufts University.

KIDRICK, JERRY
Chair, Flight Department, College of Aviation. B.A., Central Washington University; M.S., American Military University; C-H.

MADLER, RONALD A.
Dean, College of Engineering and Professor of Aerospace Engineering. B.S., M.S., and Ph.D., University of Colorado.

NORTHAM, GARY
Dean, College of Aviation, Professor and Chair, Department of Safety Science. B.A. and M.Th., Harding University; Ph.D., University of Nebraska.

SENSMEIER, MARK
Associate Professor and Chair, Departments of Aerospace and Mechanical Engineering, College of Engineering. B.S., Purdue University; M.S. and Ph.D., Virginia Polytechnic Institute and State University.

SINCLAIR, MARK R.
Professor and Chair, Department of Meteorology, College of Aviation. B.S., Otago University, New Zealand; Ph.D., Naval Postgraduate School.

SOBOTTA, ROBIN
Professor and Chair, Department of Business, College of Arts and Sciences. B.S., Grand Valley State University; M.B.A./A., Embry-Riddle Aeronautical University; Ph.D., Arizona State University.

SMITH, DARREL W.
Professor and Chair, Department of Physics, College of Arts and Sciences. B.A., M.A., and Ph.D., University of California, Irvine.

TSUTSUI, HISAYA
Professor and Chair, Department of Mathematics, College of Arts and Sciences. B.S., University of Dayton; M. and Ph.D., Northern Illinois University.
Administration

<table>
<thead>
<tr>
<th>UNIVERSITY</th>
</tr>
</thead>
</table>
| **BIXLER, CYNTHIA**
Chief Information Officer.
A.S., Daytona Beach Community College. |
| **BRAZIS, LEONARD**
Director, Strategic Planning.
B.S. and M.B.A.A., Embry-Riddle Aeronautical University. |
| **BERG, MICHELLE**
Executive Director, Alumni Relations.
A.S., Rosebank Bible College; Cert. Ed., University of Johannesburg, South Africa. |
| **DESLAURIERS, FAITH W.**
University Director, Veterans Affairs.
B.S. and M.Acc., Ph.D., University of Florida; CPA; CIA. |
| **FRANCO, MARIA**
Director, Institutional Research.
B.S. and M.S., University of Central Florida. |
| **HUNT, JONI**
Director of Government Relations.
B.S. and M.A.S., Embry-Riddle Aeronautical University. |
| **JACKSON, SUSAN**
Director of Internal Audit.
B.S. and M.S., University of Central Florida. |
| **LLOYD, VANESSA**
Director, Disability Student Services.
B.S., Bethune-Cookman College; M.S.T.M., Embry-Riddle Aeronautical University. |
| **MANNING, LINDA**
University Controller.
B.S. and M.A., Northern Illinois University; CPA. |
| **MCCUNE, DAN**
University Safety Officer.
B.S., New York University; M.S., Chapman College; ATP; CE-500. |
| **MITCHELL, FRANCES**
Executive Director of Finance and Business.
B.S., Rollins College. |
| **RIDDER, STEVEN G.**
Director, Athletics and Head Basketball Coach.
B.S., Berea College; M.S., Eastern Kentucky University. |
| **ROACH, RICHARD D.**
Associate Vice President for Institutional Effectiveness.
B.A., University of Houston; M.Div. and D.Min., Southwestern Baptist Theological Seminary. |
| **ROLLINS, JOHN E.**
Director, Academic Performance Studies.
B.S., Embry-Riddle Aeronautical University; M.A., University of Central Florida; C-H; P-ASEL; P-G. |
| **SCOTT-KOLLAR, LISA**
Executive Director, Career Services.
B.S. and M.S.A., Embry-Riddle Aeronautical University; C-MEL-I. |
| **YOUNG, BRANDON**
Executive Director, Human Resources.
B.S. and M.B.A., University of Central Florida. |

<table>
<thead>
<tr>
<th>PRESCOTT</th>
</tr>
</thead>
</table>
| **BLAKE, TED**
Athletic Director.
B.S., Emporia State University; M.A., Arizona State University. |
| **BODEN, HARRY**
Director, Safety and Security.
B.A., St. Mary’s College; B.A., Prescott College. |
| **FRAHER, ANDY**
Director, International Recruitment.
B.S. and M.A., Northern Arizona University. |
| **HALL, DAVID**
Director, Business & Finance.
B.A., Arizona State University. |
| **LAHANN, MARY**
Director, Records & Registration.
B.S. and M.A., Northern Arizona University. |
| **LUPIN, DANIEL**
Director, Financial Aid.
B.S., Yavapai College. |
| **FROST, ELIZABETH**
Director, Housing.
B.S., Yavapai College. |
| **PALMER, SANDRA F.**
Director, Health Services.
Registered Nurse. A.D.N., Yavapai College. |
| **RAJALA, THOMAS**
Dean of Enrollment Management.
| **STEPHAN, LARRY K.**
Dean of Students.
B.S., Ohio Northern University; M.A., Northern Arizona University. |
| **THOMAS, SARAH**
Director, Library Services.
B.A., University of New Mexico; M.L.S., University of Arizona. |
Faculty and Administration

Prescott Campus Faculty

College of Arts and Sciences

ADAMS, JAMES E., LIEUTENANT COLONEL, U.S. ARMY
Officer in Charge and Associate Professor of Military Science,
Army ROTC. B.S., University of Montana; M.S., Long Island
University.

BAILEY, QUENTIN
Assistant Professor of Physics. B.S., University of Pittsburgh; M.S.
and Ph.D., Indiana University.

Baker, Robert W.
Associate Professor of Global Security and Intelligence Studies. B.S.,
University of Nebraska; M.A., Washington State University.

Beatty, Jametha A.
Associate Professor of Humanities and Communications. B.A.,
University of Arizona; M.A., San Francisco State University;
Ph.D., Indiana University of Pennsylvania.

Belanger, Marty, Sergeant First Class, U.S. Army
Military Science Instructor, Army ROTC. Combat Infantryman

Bloomstrom, Sally A.
Associate Professor of Humanities and Communications. B.A.,
Arizona State University; M.A. and Ph.D., Michigan State
University.

Bosket, Randall, Lieutenant Colonel, U.S. Air
Force
Assistant Professor of Aerospace Studies, Air Force ROTC. B.A.,
Colorado State University and M.S., Abilene Christian
University.

CARRERAS, RICARDO
Associate Professor of Business and Economics. B.A., University of
the Americas, Mexico; M.S. and Ph.D., Texas Tech University.

Chen, LeeanN
Associate Professor of Asian Studies, Humanities, and Communications. B.A., People’s University, Beijing, China;
M.A., Bradley University; Ph.D., University of Illinois.

Devereux, Nicholas A.
Associate Professor of Physics and Astronomy. B.Sc., Leicester
University, England; M.Sc. and Ph.D., University of Hawaii;
CFI; P-ASEL.

EHRESMAN, MARK, MASTER SERGEANT, U.S. ARMY
Senior Military Science Instructor, Army ROTC. B.S., Embry-Riddle Aeronautical University; Combat Infantryman.

Eisenhauer, Ryan, Captain, U.S. Army
Associate Professor of Military Science, Army ROTC. B.S., Embry-Riddle Aeronautical University.

Gibson, Rick
Assistant Professor of Business. B.A., Winona State University;
M.I.M., American Graduate School of Management.

GorzidoOoz, JavAd
Professor of Finance. B.A., Tehran College of Insurance; M.A.,
M.B.A., Ph.D., Indiana University.

GretarssoNN, Andri M.
Associate Professor of Physics. B.S., University of Edinburgh;
Ph.D., Syracuse University.

Haskins, Mark S., Colonel, U.S. Air Force
Detachment Commander and Professor of Aerospace Studies, Air
Force ROTC. B.S., Pacific Lutheran University; M.A., University of
Oklahoma.

Henner, Murray
Professor of Global Studies. B.A. and L.L.M., Hofstra University;
J.D., Western New England College.

Hohrein, Brian, Sergeant First Class, U.S. Army
Military Science Instructor, Army ROTC. B.S., Embry-Riddle Aeronautical University.

Hriljac, Paul
Professor of Mathematics and Computer Science. B.S., University of
Illinois; Ph.D., Massachusetts Institute of Technology.

Jacobs, Jason M.
Instructor of Mathematics. B.S., Millersville University; M.S.,
Virginia Tech.

Jaffe, Matt
Associate Professor of Software Engineering. B.A., University of
California, Berkeley; M.S., University of West Florida; Ph.D.,
University of California, Irvine.

Jenkins, John
Professor of Mathematics. B.A., University of Tennessee; M.A.T.,
University of Florida.

Johnson, Timothy H., Major, U.S. Air Force
Assistant Professor of Aerospace Studies, Air Force ROTC. B.A.,
Rutgers University, M.S., St. Joseph’s University

Landis-Groom, Eileen E.
Professor of Humanities and Communications. B.A., Bucknell
University; M.A., Western Washington University; D.A., Idaho
State University.

Lawson, Thomas
Assistant Professor of Software Engineering. B.S. and M.Ed.,
Arizona State University; M.S., East Texas State University.

Mack, Charles E., Captain, U.S. Air Force
Assistant Professor of Aerospace Studies. Air Force ROTC; B.S.
and M.S., Troy State University.

Magrath, Douglas
Assistant Professor of Arabic. M.A., American University.

Malnar, Alan
Associate Professor of Humanities and Communications. B.A.,
Hunter College; M.A., California State University, Dominguez
Hills; Ph.D., Indiana University of Pennsylvania.

McElwain, Patric
Associate Professor of Humanities and Communications. B.A.,
Bryan College; M.A., Edinboro State University; Ph.D., Indiana
University of Pennsylvania.

Nordbrock, Anita
Associate Professor of Humanities and Communications. B.A. and
M.A., University of Illinois; M.A. and Ph.D., University of
Hawaii, Manoa.

Nordstrom, Brian H.
Professor of Chemistry. B.A. and M.S., University of California,
Berkeley; Ed.D., Northern Arizona University.
POON, EDWARD
Associate Professor of Mathematics. B.S., University of British Columbia; M.S. and Ph.D., University of Toronto.

RACHFORD, BRIAN L.
Associate Professor of Physics. B.S., University of Iowa; Ph.D., University of Wyoming.

SITTERSON, SCOTT D., CAPTAIN, U.S. AIR FORCE
Assistant Professor of Aerospace Studies, Air Force ROTC.
B.S., Embry-Riddle Aeronautical University; M.S., Webster University.

THOMAS, ROMEO
Professor of Mathematics. B.S. and M.S., University of Baghdad; Ph.D., University of Warwick, England.

TOPPER, MICHAEL
Assistant Professor of Mathematics. B.A., Mount St. Mary’s College; M.A., University of Maryland, College Park.

WILSON, CATHERINE
Instructor of Mathematics. B.S. and M.S., Northern Arizona University.

YANG, LI
Assistant Professor of Communications and Chinese. B.A. and M.A. Nankai University, China, Ph.D University Of Arizona

ZANOLIN, MICHELE
Assistant Professor of Physics. B.S., M.S., Ph.D., University of Parma, Italy.

ZHAN, HONG
Assistant Professor of Communications and Chinese. B.A. and M.A., Northeast Normal University, China; M.E., Utsunomiya University, Japan; M.A. and Ed.D., Northern Arizona University.

College of Aviation

BEDARD, RAYNARD
Associate Professor of Aeronautical Science. B.Eng., Royal Military College; M.S., Naval Postgraduate School.

CARR, RONALD L.
Assistant Professor of Aeronautical Science. B.S., Arizona State University; M.A.S., Embry-Riddle Aeronautical University; ATP.

COX, BRYAN L.
Assistant Professor of Aeronautical Science. B.S. and M.A.S., Embry-Riddle Aeronautical University. CI-AMEL; CI-ASEL-S; CI-Helicopter; A&P; Senior Army Aviator (retired); Military IP (retired).

FOGLEMAN, MAXWELL
Associate Professor of Safety Science. B.S., University of Arizona; M.S., Pennsylvania State University; M.P.H., New Jersey School of Public Health; Ph.D., Texas Technological University.

IVANOVA, DOROTHEA C.
Associate Professor of Meteorology. B.S. and M.S., Sofia University; Ph.D., University of Nevada.

JAMES, CURTIS
Associate Professor of Meteorology. B.S., University of Arizona; Tucson; Ph.D., University of Washington.

JERALDS, SEAN
Assistant Professor of Aeronautical Science. B.S. and M.S., Embry-Riddle Aeronautical University; C-ASEL-I; CFII; MEI; AGI.

LUEDTKE, JACQUELINE
Professor of Aeronautical Science. B.B.A. and M.B.A., Wichita State University; Ed.D., Oklahoma State University; CFII-I; C-ASEL-I; AGI; IGI.

MANDELFIELD, NICHOLAS
Assistant Professor of Aeronautical Science. B.S., University of Detroit; M.H.A., Washington University, St. Louis; C-ASEL-I; BGI.

O’HARA, WILLIAM F.
Assistant Professor of Aeronautical Science. B.A., College of the Holy Cross; M.A., U.S. Naval War College; ATP-AMELCA 212; C-ASEL-I; CFII; MEI.

PANOSIAN, JACK M.
Assistant Professor of Aeronautical Science. B.S., Embry-Riddle Aeronautical University; J.D., Thomas M. Cooley Law School; ATP-ASML; Type; DC-9, A-319/320; CFII; BGI; AGI; C-ASEL-I.

PARSONS, KENNETH E.
Associate Professor of Meteorology. B.S., Miami University; B.S., Pennsylvania State University; M.S., Troy State University; Ph.D., Purdue University.

REHBACH, RANDY
Assistant Professor of Aeronautical Science. B.S. and M.A.S., Embry-Riddle Aeronautical University; AD; A&P; ATP; CE-500; CFII.

SAVAGE, ERIC
Assistant Professor Of Safety Science. B.S. And M.S., Purdue University. M.B.A., Southern Illinois University, Ph.D. Purdue University

SPENCER, BRENT
Assistant Professor Of Air Traffic Management. B.S. Embry-Riddle Aeronautical University

WALDOCK, WILLIAM
Professor of Safety Science. B.A., University of Florida; M.A.S., Embry-Riddle Aeronautical University; PASEL.

College of Engineering

ASHWORTH, JEFFREY
Associate Professor of Aerospace Engineering. B.S.A.E. and M.S.A.E., West Virginia University; Ph.D., University of Colorado, Boulder; P-ASEL.

BENAVIDES, JULIO
Assistant Professor Aerospace Engineering. B.S., Embry-Riddle Aeronautical University, MS Penn State University, Ph.D., Penn State University.

BORDIGNON, KEN A.
Assistant Professor of Aerospace Engineering. B.S., University of Notre Dame; M.A.E. and Ph.D., Virginia Tech.

DAVIS, BRIAN
Associate Professor Of Electrical And Computer Engineering. B.S.E.E. Michigan Technological University. M.S.E University Of Michigan. Ph.D University Of Michigan
Faculty and Administration

FABIAN, MICHAEL
Associate Professor of Aerospace Engineering. B.S., US Air Force Academy; M.S. University of Washington; and Ph.D., University of Notre Dame.

GALLY, THOMAS A.
Professor of Aerospace Engineering. B.S., M.S., and Ph.D., Texas A&M University.

HAVEN, BRENTDA
Associate Professor of Mechanical Engineering. B.S., University of Minnesota Twin Cities; M.S., Air Force Institute of Technology; Ph.D., University of Washington.

HAYASHIBARA, SHIGEO
Assistant Professor of Aerospace Engineering. B.S.A.E., Wichita State University; M.S., University of Southern California; Ph.D., Wichita State University.

HEBLING, JAMES
Associate Professor of Aerospace Engineering. B.S., Purdue University; M.S., California State Polytechnic.

ISENBERG, DOUGLAS
Assistant Professor Of Aerospace And Mechanical Engineering. B.S., University Of North Carolina Charlotte, M.S., University Of North Carolina Charlotte, Ph.D University Of North Carolina Charlotte.

JOE, WOONG YEOL
Assistant Professor Of Mechanical Engineering. B.S., Hong-Ik University. M.S. Polytechnic Institute Of New York University. Ph.D., Columbia University

KODIMER, DENNIS
Assistant Professor Electrical Engineering. B.S.E.E California Institute Of Technology, M.S. University of Illinois.

LANNING, DAVID B.
Professor of Aerospace Engineering. B.S. and Ph.D., Ohio State University; M.S., University of Akron.

LESTARI, WAHYU
Associate Professor of Aerospace Engineering. B.S. and M.S., Delft University of Technology; Ph.D., Georgia Institute of Technology.

LYALL, JAMES R.
Associate Professor of Electrical Engineering. B.S.E.E., General Motors Institute; M.S.E.E., University of Colorado; D.E., University of Kansas; P-ASEL.

POST, JOHN E.
Assistant Professor of Electrical Engineering. B.S., Texas Tech University; M.E., University of Texas; Ph.D., Stanford University.

TRAUB, LANCE
Associate Professor of Aerospace Engineering. B.S. and M.S., University Of Witwatersrand; Ph.D., Texas A&M.

WALL, BRAD
Assistant Professor of Aerospace Engineering. B.S., University of North Dakota; M.S. and Ph.D., University of Illinois.

Professors Emeriti

RAYMOND BELLEM
Electrical Engineering

FRED CONE
Aeronautical Science

TRACY DORYLAND
Aerospace Engineering

RICHARD FELTON
Aerospace Engineering

GOVENDER S. GIARE
Aerospace Engineering

S. PORTLAND (PETE) HALL
Aeronautical Science

ROY JONES
Aeronautical Science

STEPHEN KAHNE
Electrical Engineering

LUANNE LEA
Humanities/Social Sciences

MIKE POLAY
Aeronautical Science

DAVID VIGER
Physics/Biology

MICHAEL WOLF
Physics
The Board of Trustees is composed of individuals of national, state, and local prominence. These members serve without remuneration and give freely of their time in establishing policy and providing guidance to the administration in the furtherance of the educational goals and objectives of the University.

Chairman of the Board

JIM HENDERSON
President and Chief Operating Officer
Brown and Brown Inc. (Retired)
Longwood, FL

JOHN AMORE
Chief Executive Officer
Global General Insurance
Zurich Financial Services
Staten Island, NY

ELEANOR BAUM, PH.D.
Dean of Engineering
The Cooper Union School of Engineering
(Retired)
Staten Island, NY

LAWRENCE W. CLARKSON
President
Boeing Enterprise (Retired)
Marietta, GA

KENNETH DUFOUR
President
Aviation Management Consulting Inc.
Rockford, IL

JEFFREY FEASEL
President and Chief Executive Officer
Halifax Community Health System
Daytona Beach, FL

JAMES HAGEDORN
Chairman and Chief Executive Officer
Scotts Miracle-Gro Co.
Marysville, OH

KAREN HOLBROOK
Vice President for Research and Innovation
University of South Florida
Tampa, FL

MORI HOSSEINI
President
Intervest Construction Inc.
Daytona Beach, FL

RONALD E. KEYS
Senior Advisor
Bipartisan Policy Center
Woodbridge, VA

JOSEPH MARTIN
Office of the Chairman and Vice Chairman
of the Board
Fairchild Semiconductor International Inc.
(Retired)
Cumberland Foreside, ME

JOHN O’BRIEN
Director of Engineering and Air Safety
Airline Pilots Association (Retired)
Millboro, VA

GLENN S. RITCHEY
President and Chief Executive Officer
Jon Hall Automotive Group
Daytona Beach, FL

DAVID ROBERTSON
Ray Township, MI

JEAN ROSANVALLON
President and Chief Executive Officer
Dassault Falcon Jet Inc.
South Hackensack, NJ

ZANE ROWE
Executive Vice President &
Chief Financial Officer
United Airlines
Houston, TX

LOU SENO
President
Jet Support Services, Inc.
Chicago, IL

Board of Trustees Executive Committee

Lawrence W. Clarkson
Jim Henderson, Chairman
Karen Holbrook
Mori Hosseini
Joseph Martin
Board of Trustees

Chairman Emeritus
Brig. General William W. Spruance
U.S. Air Force (Retired)
Las Vegas, NV

Trustees Emeriti
John (Jay) C. Adams
Philip H. Elliot Jr., Esq.
Harry Lamon
S. Harry Robertson
Gertrude V. Worthington

President Emeritus
Lt. General Kenneth L. Tallman

Chaplain Emeritus
Kenan Morris
OFM

Board of Visitors
Peg Billson
Tonia Fortner
Kris Ganase
Larry Gregg
Brian Hoefig

Ray Johnson
Dr. Mark LaPole
Dr. Craig Lee
John Markham
Dr. Frank Mayne

John Olsen
Katie Pribyl
Dr. Marilyn Subach
Karrin Taylor
John Thelan
Index

E
Eagle Card 75
Eagle Operations Center 93
Electrical Engineering 145
Embry-Riddle Language Institute (ERLI) 22
English
As a second language 22
Language Proficiency 17
English Language Proficiency 17
Enrollment
Undergraduate in Graduate Courses 51
Environmental Science 98
Executive Committee 243
F
FAA Medical Certificate 25
Faculty 240
Fees
Mandatory 59
Financial Assistance 61
First-Year Engineering Program 90
First Year Programs 66
Flight
Course Scheduling 41
Credit for Flight Training at Other Institutions 42
Incomplete Flight Courses 35
Leadership/Fellowship Program 63
Minor in 156
G
Global Security and Intelligence Studies 100
Grade Point Average (GPA)
Undergraduate 34
Grade Reports 34
Grades
Grade Point Average (GPA/CGPA) 34
Undergraduate 34
Graduate Research Project Grading 50
Incomplete
Graduate 51
Undergraduate 35
Internship 50
Thesis Grading 49
Grading System
Graduate 48
Undergraduate 33
Graduate
Additional Degrees 52
Research Project Grading 50
Transfer between programs 52
Graduate Admissions 26
Graduate Assistantships 63
Graduate Course Loads 48
Graduate Graduation Honors 54
Graduate Graduation Requirements 53
Graduate Internship Grading 50
Graduate Programs 90
Graduate Thesis Grading 49
Graduation
Honors
Graduate 54
Undergraduate 40
Requirements 39, 53
Grants 62
Grievance Procedure 45
GSIS Chinese 101
H
Health Insurance 71
Health Services 72
Honor Roll 35
Honor Program 80
Housing 73
Contracts 61
I
Immunizations 25
Incomplete Grade 33, 35
Information Technology Services 68
Intelligence Studies 100
Intercollegiate Athletics 66
Interdisciplinary Studies 105
International Applicants 19
International Programs 81
Internship 81
Intramural Sports 66
J
Judicial Affairs 78
See Dean of Students 78
Student Rights 46
L
Language Institute 80
Library 67
Loans 62
M
Mail 76
Marine Corps Programs 86
Master of Science in Safety Science 129
McNair Scholars Program 80
Meal Plans 74
Mechanical Engineering
B.S. in 148
Military Science Army ROTC 84
Ministry 72, 73
Minor Courses of Study 152
Mission of the University 8
N
Non-Degree Seeking Applicants 19
Nontraditional Student Applicants 18
Index

O
Officials of the University 237
Official Transcripts 17
P
Payment Procedures 57
Photography v
Physics 107
Privacy of Student Records
 Undergraduate 40
Professional Pilot 111
Professor Emeriti 242
Psychology
 Minor in 158
R
Readmission
Loss of Graduate Status and
Readmission 53
 Undergraduate 37
Refund Policy 59, 60
Regional Studies 217
Regulations
 Graduate 47
 Undergraduate 31
Residence Life Program 75
Residential Facilities 73
Returning Student Applicants 19
S
Safety and Security 69
Schedule of Classes 47
Schedule of Classes and
Registration 31
SEVIS 22
Social Sciences 89
Space Physics
 B.S. in 107
Special Academic Programs 80
Still Exploring Engineering Freshman 90
Student Activities 65
Student Employment 69
Student Exchange Visitor Information System (SEVIS) 22
Student Government Association 66
Student Government Association (SGA) 63
T
Technical Intelligence 159
Testing
 English Language Proficiency 17
Thesis
 Grading of 49
TOEFL 17
Transcript Requests 40, 54
Transcripts 17
Transfer Applicants 17
Tuition
 Advanced, Required Deposit 22
 Payment for Flight Instruction 59
Tuition and Fees 58
Two Degrees of the Same Rank 37
U
Undergraduate Programs 87
Unit of Credit 33
V
Veterans
 Education Benefits 63
W
Weather
 Applied Meteorology 228
Withdrawal
 From a Course 34, 50
 From the University 34
Withdrawal/Refund Schedule 60